studiot 1609 Posted July 28, 2018 This issue is offtopic in a thread about electrons so I have started a new thread for discussion. https://www.scienceforums.net/topic/115443-electrons-how-do-they-work/?tab=comments#comment-1062243 Quote 1 hour ago, studiot said: Indeed, which is why I based my figure smack in the middle of the range that can can currently be found. This range is very large, larger than the range of atomic sizes for instance. Furthermore zero is a finite number. Finite is often used to mean a non-zero number https://en.wikipedia.org/wiki/Finite_number "In mathematical parlance, a value other than infinite or infinitesimal values and distinct from the value 0" I prefer the definitions of Dedekind : not infinite Russell : Able to be counted using a terminating sequence of natural numbers. Consider the equation x2 - 2x + 1= 0 Is the difference between the two roots of this quadratic or infinite? 0 Share this post Link to post Share on other sites

taeto 50 Posted July 28, 2018 It is hard to come up with any generally applicable definition by which zero should not be finite. Dedekind: 0 (understood as the empty set, so that the definition applies) does not allow an injection into a proper subset. Hence 0 is finite. Russell: 0 has a bijection to a set {1,2,...,n} for a natural number n, namely for n = 0 and empty bijection. Hence 0 is finite. All well-orderings of 0 are isomorphic. This implies 0 is finite. Every non-empty family of subsets of 0 has an inclusionwise minimal element (Tarski). Etc. There are strange sets that are Dedekind-finite but Kuratowski-infinite. 0 is not one of them, since 0 is Kuratowski-finite by definition. I prefer Russell myself, probably because I come from Combinatorics. For us it is important not only to know whether some things exists or not, but also to count the number of them. An expression like n^m for natural numbers n and m means, by definition, the number of different functions from a set of m elements to a set of n elements. In particular you are quite aware that 0^0 = 1 means that there is the unique function \( \emptyset \) from the empty set to the empty set, so Russell's definition applies nicely. 2 Share this post Link to post Share on other sites

swansont 6779 Posted July 28, 2018 The context in which I brought it up was in physics, not mathematics. In that context, finite is often used to mean non-zero. For example https://arxiv.org/abs/hep-th/0611052 I suspect its use stems from situations where you could be dividing by the term, which gives rise to infinities. 0 Share this post Link to post Share on other sites

studiot 1609 Posted July 28, 2018 Thank you taeto for that comprehensive analysis. +1 31 minutes ago, swansont said: The context in which I brought it up was in physics, not mathematics. In that context, finite is often used to mean non-zero. For example https://arxiv.org/abs/hep-th/0611052 I suspect its use stems from situations where you could be dividing by the term, which gives rise to infinities. Yes and I think, even in Mathematics it is implied in some activity that the finite something is non zero, for example in finite differences and finite elements. Otherwise you would never move across the net, although in finite differences you carry on until the differences are zero. But in Engineering the terms Poles and Zeros are often used, here is an extract from an Engineering book of that name. Note the definite use of a real finite zero. So, no offence meant, swansont, nothing personal and all that, but I think the jury is out on technical use of finite zero, but taeto has shown tha mathematically it is finite. We also have the term singularity (removable and permanent). 0 Share this post Link to post Share on other sites

swansont 6779 Posted July 28, 2018 No offense taken. Physicists have been known to use math in a way that drives mathematicians crazier than they already are. 2 Share this post Link to post Share on other sites

mathematic 77 Posted July 28, 2018 Whether or not to call zero "finite" outside of math is just wordplay. In math, zero is finite. 0 Share this post Link to post Share on other sites

StringJunky 2021 Posted July 28, 2018 1 hour ago, mathematic said: Whether or not to call zero "finite" outside of math is just wordplay. In math, zero is finite. How big is zero if it's finite? 0 Share this post Link to post Share on other sites

koti 367 Posted July 28, 2018 1 minute ago, StringJunky said: How big is zero if it's finite? I guess it depends. As for an outside of math answer, I’m not sure if the OP question is a valid one outside of mathematics. 0 Share this post Link to post Share on other sites

geordief 83 Posted July 28, 2018 Can zero be seen as a limit ? (any number divided by a number that we let increase without limit) In that sense is zero infinite because there is an infinite process involved in its definition? Also,I wonder is the zero used in 10,20 etc the same as the zero used to denote an absence of quantity? 0 Share this post Link to post Share on other sites

Sensei 835 Posted July 28, 2018 8 minutes ago, StringJunky said: How big is zero if it's finite? How big is 1.. ? How big is 100.. ? How big is any other number.. ? I don't think so word "big" applies here. It would make more sense, if there would be second reference number to which zero is compared.. "0 is bigger than -1" "0 has just one digit required to write it in any numeral system". (only 0 and 1 fulfill this. To write down 2 in binary system there are needed two digits %10) "irrational number has infinite number of digits required to write it in any numeric system". 0 is not irrational number. 0 Share this post Link to post Share on other sites

studiot 1609 Posted July 28, 2018 16 minutes ago, geordief said: Can zero be seen as a limit ? Yes zero is formally a limit of many sequences. In fact there is even a special name for them, A null sequence is a sequence that has zero as its limit. 0 Share this post Link to post Share on other sites

StringJunky 2021 Posted July 29, 2018 39 minutes ago, studiot said: Yes zero is formally a limit of many sequences. In fact there is even a special name for them, A null sequence is a sequence that has zero as its limit. Is the subject of the question not dependent on the branch of maths? 0 Share this post Link to post Share on other sites

wtf 116 Posted July 29, 2018 (edited) At first I said, "Of course zero is finite." But people gave good examples of casual usage in which finite means nonzero. I realized that when something has a small but nonzero probability, I'll say it has a "finite probability," meaning it's not zero. Interesting semantic point! Edited July 29, 2018 by wtf 0 Share this post Link to post Share on other sites

StringJunky 2021 Posted July 29, 2018 (edited) 28 minutes ago, wtf said: At first I said, "Of course zero is finite." But people gave good examples of casual usage in which finite means nonzero. I realized that when something has a small but nonzero probability, I'll say it has a "finite probability," meaning it's not zero. Interesting semantic point! Can't it be reasoned that finite is anything but zero, which is empty? Edited July 29, 2018 by StringJunky 0 Share this post Link to post Share on other sites

wtf 116 Posted July 29, 2018 (edited) 59 minutes ago, StringJunky said: Can't it be reasoned that finite is anything but zero, which is empty? No. The empty set is finite since it's not in bijection with any proper subset of itself. That's because it has no proper subsets. So it's Dedekind-finite. And it's in bijective correspondence with a natural number, namely zero. So it's finite in the classical (non-Dedekind) sense. It's of interest that absent the axiom of choice, there are infinite sets that are Dedekind-finite. That is, they're not bijectable to any natural number, and they're not in bijection with any proper subset of themselves. These are very weird sets. The only way we can say zero is finite is by abuse of terminology in casual usage. In fact in any written work we shouldn't even use the the incorrect terminology to make sure nobody is confused. Edited July 29, 2018 by wtf 0 Share this post Link to post Share on other sites

studiot 1609 Posted July 29, 2018 7 hours ago, wtf said: In fact in any written work we shouldn't even use the the incorrect terminology to make sure nobody is confused. So what is your take on the third finite difference column in a (finite difference) table of values of a quadratic function? 0 Share this post Link to post Share on other sites

MathGeek 8 Posted July 29, 2018 Finite is more commonly used as the opposite of infinite, in which case zero is finite. It is possible that someone could think of finite as the opposite of infinitesimal. In this usage, the question of whether zero is finite is more open to debate. I prefer to avoid mathematical debates which are more about definitions. 0 Share this post Link to post Share on other sites

wtf 116 Posted July 31, 2018 On 7/29/2018 at 3:33 AM, studiot said: So what is your take on the third finite difference column in a (finite difference) table of values of a quadratic function? Not understanding the question. The successive differences of a polynomial are eventually all zeros. I can't relate this to the subject of the thread, which is the casual semantics of distinguishing zero from finite. 0 Share this post Link to post Share on other sites

studiot 1609 Posted July 31, 2018 1 hour ago, wtf said: I can't relate this to the subject of the thread, which is the casual semantics of distinguishing zero from finite. Such as stated by Wikipedia here Quote Wikpedia finite A countable number less than infinity, being the cardinality of a finite set – i.e., some natural number, possibly 0 A real number, such as may result from a measurement (of time, length, area, etc.) In mathematical parlance, a value other than infinite or infinitesimal values and distinct from the value 0 Descriptive informalities finite Next to the usual meaning of "not infinite", in another more restrictive meaning that one may encounter, a value being said to be "finite" also excludes infinitesimal values and the value 0. For example, if the variance of a random variable is said to be finite, this implies it is a positive real number. 1 hour ago, wtf said: Not understanding the question. The successive differences of a polynomial are eventually all zeros. We both know that. I was just observing that users of finite differences expect the finite difference to be other than zero. This is a mathematical operation, not a physics or engineering one though it is (was) much used in both. 0 Share this post Link to post Share on other sites

wtf 116 Posted July 31, 2018 1 hour ago, studiot said: Such as stated by Wikipedia here We both know that. I was just observing that users of finite differences expect the finite difference to be other than zero. This is a mathematical operation, not a physics or engineering one though it is (was) much used in both. It's by no means a mathematical question. Mathematically, zero is finite. This is a semantic question, concerning how people, even mathematicians who know better, use words in casual conversation. 0 Share this post Link to post Share on other sites

taeto 50 Posted August 1, 2018 On 7/28/2018 at 6:50 PM, swansont said: The context in which I brought it up was in physics, not mathematics. In that context, finite is often used to mean non-zero. For example https://arxiv.org/abs/hep-th/0611052 I suspect its use stems from situations where you could be dividing by the term, which gives rise to infinities. You beat me to it. It just occurred to me how physicists like to say "neutrinoes have finite mass" to mean that they have positive rest mass. Some particle has "finite radius" meaning positive radius. And so on. It is almost like mass ought to be measured in 1/kg and sizes of things in 1/m. Similarly to how the charge of an electron really should be positive instead of negative, given the direction in which electricity actually flows. But as opposed to mathematics, where things intrinsically are allowed to become infinite, that is not usually so in physics. In mathematics, "finite" rightly means the opposite of "infinite", and the dichotomy does not apply to physics, because then it is just a matter of choice of units. 1 Share this post Link to post Share on other sites

Bender 204 Posted August 5, 2018 On 28/7/2018 at 7:33 PM, studiot said: But in Engineering In engineering, nobody cares about rigorous definitions. What matters is whether it works, not whether someone wants to call some trivially useless cases "finite" or not. 1 Share this post Link to post Share on other sites