Jump to content

Leaderboard

Popular Content

Showing content with the highest reputation on 04/23/22 in all areas

  1. A laser weapon capable of shooting down flying drones has been deployed for the very first time by the US Navy, though only for demonstration purposes. Until now, many questions had lingered over whether laser-based weaponry would ever become an effective tool in modern warfare, some of which have now been answered by official footage of the event. Installed aboard the USS Portland, the 150-kilowatt-class Technology Maturation Laser Weapon System Demonstrator (LWSD) was used to successfully disable an unmanned aerial vehicle (UAV) on May 16, 2020, in what was the first use of a high-energy class solid-state laser weapon. "By conducting advanced at-sea tests against UAVs and small crafts, we will gain valuable information on the capabilities of the Solid State Laser Weapons System Demonstrator against potential threats," said US Navy Captain Karrey Sanders in a statement. "With this new advanced capability, we are redefining war at sea for the Navy." https://www.iflscience.com/technology/us-navy-released-footage-laser-weapon-shooting-down-drone-first-time/
    2 points
  2. Lasers are fine; but there's no way I'm stepping into a teleporter. ( a fly might be in there with me )
    2 points
  3. This made me laugh as I've seen it frequently. People who on the science threads present coherent, logical and reasonable arguments that I cannot help but admire for their quality, will resort to hyperbole and emotion on the humanity forums. It seems so out of character when I see it that I have to follow subsequent comments before recognizing they were serious.
    2 points
  4. Those same people one opposes may be applying the same qualities, in their minds, to their argument as oneself. There is no almighty referee to decide who is the most morally superior. Winning arguments doesn't change your opponent, but meeting in the middle might.`There are people who find ones beliefs genuinely repugnant, and that may well be positions we hold dear. Politics, ethics, morality are not based on a level of objective facts that we can all agree on much of the , like in science. In the light of that, getting on ones high horse and never dismounting will only ever foster continued dischordance. It's funny really, being in science forum. All these intelligent people trained in or desire to follow the scientific method and who have an inherent appreciation of uncertainly, leave it behind when they enter the humanity forums.
    2 points
  5. On the topic of trolling: Just registering my concern that some of the smartest minds on this site are currently wasting their cognitive skills on the infinite Escher staircase that is the Ketanji Brown Jackson thread. You have a couple members who just are Not. Ever. Going. To. Concede. Any. Point. No matter how well argued and factually supported. It's Spring in the northern hemisphere! Go outside!
    2 points
  6. Riots at the WTO conference in 1999 in Seattle, "Occupy" Wall Street, antifa, the Weather Underground, some of the violence at BLM rallies, violent confrontations against far-right rallies...
    1 point
  7. Exactly. I have to answer to my conscience only. I can express my POV, if I want to. I can learn POVs of others and understand them, if I want to. There is nothing more can be done about them. If another person doesn't agree with my POV, it is not because they don't understand it, but because their POV is different. So, there is no point in explaining my POV again and again, is there?
    1 point
  8. As we did in the gay marriage threads, and the universal healthcare threads, and the transgendered athlete threads, and the climate change threads, and the evolution threads, and the 9/11 truther threads, etc. IMO it’s not a waste of cognitive skills to stand up tenaciously and with persistence for what’s right and defend shared principles in the face of those who want us to question whether or not facts even exist or if our neighbors and school teachers are grooming young children for sexual exploit and need to be exterminated.
    1 point
  9. None at all my friend. And they were unfair attacks so I understand. I do realize that Biden can make mistakes and he has made plenty. I suppose I am currently less able to think of any that concern me too much aside from his earlier career. I mean; when he was younger he said a few things that I think we both would agree were racist. He changed with the times I guess but as an auld yin, I imagine he still utters something privately where people are a like "dude, I know you're old, but you can't say shit like that anymore." I suppose something that also makes me feel sorry for him, is that I don't think he really wanted the presidency this time around. I think he only went for it because giving people more choices than Trump or Sanders was more important for the USA than what he wanted. There is Valor in that act. I think it does reveal a quality of character that is ideal for leadership. I wish he had gotten in with more power for his party in the Senate though, I feel like he could have done so much more with more potential to pass legislation and he's not going to get much of a fair shake at it. That said though, hyperpartisanship being what it is, it could be a long time before anybody has a supermajority in the senate again. If it happens anytime soon, it'll probably be due to a despicable gerrymandering pulled by one of the parties. Even though you're Canadian, I still think you do have a right through neighborly interest and concern to comment on the situation here in the US. I'm not a citizen and can only vote in state and municipal elections due to policy in this particular state giving me a vote. Although my daughter is Scottish-American... that's basically Canadian right? 😆 I even have some French ancestry!
    1 point
  10. This is completely wrong. White light from a black body, such as the sun or a filament light bulb, is not composed of a mixture of yellow, cyan etc. There is continuous emission across the whole range of visible wavelengths. So there is light of all the colours detectable by the human eye, from red through to violet and including all the colours in between. Furthermore, shorter wavelength light is deflected through a bigger angle by passing into an optically denser medium, so the dispersion of the incident white light into its constituent wavelengths begins from the moment the light ray first encounters the glass. I haven't bothered with the rest, as since you get so much wrong at the start there seems little point.
    1 point
  11. No, you won't see me in November in Stockholm. But I will tell you this: My work is more worth than all the others together which have received that physics prize. In 50-100 years, the students will learn that what you read above. You can count on that. P.S. If you don't have arguments against my assertions, then get lost from my threads. You just waste the server's memory.
    -1 points
  12. Do you know what the greatest hoax in the history of science is? In my view, it is this picture: It is taken from the Pink Floyd’s album “The dark side of the moon”. The members of one of the greatest bands of all times have also fallen for this hoax, taking this drawing as an idol of worship on their legendary album. The same drawing can be found in billions of textbooks throughout the world. Why is this drawing a hoax? Because it has nothing, absolutely NOTHING to do with the truth. The phenomenon doesn’t look like that at all. Johann Wolfgang von Goethe has already given the right picture two hundred years ago: There are numerous flaws in the first drawing: 1) At the emerging surface of the prism there are practically no colors, only white light; 2) The colors don’t diverge, so to say, parallel to each other as shown in the first drawing, but they combine; 3) There is no green color near the emerging surface. It appears later as a result of the mixing between the yellow and the cyan. The wider the incident beam is, the farther the green color appears; 4) All the colors in the first drawing have equal width. There’s no such thing. The yellow is actually much wider than the red. The same applies to the violet and cyan. The width of the yellow is the same as the width of the violet. The width of the red is the same as the width of the cyan; 5) There is no separate orange color in the refracted beam; 6) There are also no seven colors in the so-called spectrum (as it is usually said). On the plus-side there are only yellow and red; on the minus-side there are only violet and cyan. Together with the green there are overall five colors. Another hoax in relation to the previous one is the following drawing: It appears in the textbooks when the so-called chromatic aberration is discussed. The true picture of the phenomenon looks like this: A collimated beam of light goes through a chromatic convex lens. It converges in a point and then diverges. Before the focal point the beam is rounded by a yellow-red wreath (figure a below) and by a violet-cyan wreath after the focal point (figure b). The yellow color turns into violet, the red color turns into cyan. Have you ever heard of the very simple experiment just mentioned? I doubt you have. Do you know why? Because the science of the last centuries tends to cheat. It sweeps under the carpet the experiments which are not in accordance with its fake theories. If it describes such experiments, then the contradictions become obvious. It should then admit that its theory is wrong and that it doesn’t have a true explanation of the phenomena. But this science would rather cheat than to admit its cluelessness about such simple experiments. The members of the academic community would lose their authority and also their reputation as the smartest people of the society. I CALL YOU TO REMEMBER THIS EXPERIMENT VERY WELL because it disproves several hoaxes of the contemporary science: 1) the light is not composed of colors; 2) there is no such thing as frequencies of colors; then, how on Earth would the frequencies suddenly change into other on their linear path of propagation in a point far from refraction surface?!! ; 3) there is also no such thing as wavelengths of colors; 4) light and colors are not electromagnetic waves. I want to elaborate something regarding the hoax below: Something similar to this can be obtained with a convex lens in a very specific way. Let me explain. Let’s say that on the incident surface of the lens we glue two opaque papers: an opaque ring on the outer edge of the lens and an opaque circle in the middle as presented in the figure (b) below: A collimated beam goes through the lens of the figure (b). If we hold a white sheet of paper before the focal point, then we will get the image presented in the figure (c). A YELLOW-red ring appears at the outer edge, while a VIOLET-cyan ring at the inner edge of the light ring. Between them it is white. Now, let us narrow the white ring of the figure (b) above, so that we get a lens like the one presented in the figure (b) below. In this case the yellow color from the outer edge will meet the cyan color from the inner edge resulting in a green ring in the middle (figure c). Only in this way we can get something similar to the hoax image. I believe that the images in the second to last series of figures could serve as a basis for explanation of the optical phenomenon Halo which appears in the very cold polar regions. In some photographs of Halo the yellow-red ring appears at the outer edge, while the violet-cyan ring at the inner edge: But in other photographs it is reversed: just like the figure (c) and (d) in the mentioned series of figures. Maybe the frozen water drops in the atmosphere make somehow a huge lens. Part 2 An explanation of the extraordinary experiments presented in the video below: This video exposes very obviously the whole emptiness of the Newton’s theory of colors. Please watch it carefully (especially its later part) before reading this post. The key for an explanation of the prismatic colors and the extraordinary experiments presented in this video is the “principle of the arrow”. I call you to remember this phrase very well because it will certainly be the milestone of the future science. What is the principle of the arrow? Although I have elaborated it many times in my older answers and posts, still I will repeat the main points here for those who haven’t read them (I will also cite some articles of mine at the end of this post). When a body moves through space filled with air, then higher pressure is created in front of it, while lower pressure behind it. The higher pressure is Plus, the lower pressure is Minus. I use to call it the ‘principle of the arrow’ (− >—> +). The greater the velocity of the body is, the stronger is the plus in front of it as well as the minus behind it. And look now: this very principle can be found wherever the light produces colors. The archetype of this pattern is the flame of a candle or a cigarette lighter. A violet/cyan minus appears at the back and a yellow/red plus at the front of this fiery arrow: The left picture is a real photograph of an opalite stone illuminated from below with a white LED lamp. ( Opalites are very cheap stones and easy to find. I urge everyone who is really interested in light and colors to find these stones. ) Let’s find the same principle in the phenomenon of refraction colors, that is, the colors which appear on a triangular prism. The light undergoes two refractions on the prism: one on entering the prism and another on emerging from it. For the birth of the refraction colors there is no need of a double, but only of a single refraction. In the following video it is visible how the colors appear only with one refraction (from 0:48 to 0:57): Let me jump for a moment to something else, to the question of the so-called Bernoulli’s principle (footnote 1). Please look at the picture below: The water flows through a wider pipe and then through a narrower pipe. The velocity of the water increases in the narrower pipe. As a result, the water column over it is lower than over the wider pipe. Why is that so? The water columns over the pipes could be imagined as many tails of the water-body. Since the velocity of the water is greater in the narrower pipe, a stronger MINUS occurs in its tail than in the tail of the wider pipe, thus the air-pressure from above lowers the water column over the narrower pipe more. At the same time a stronger PLUS arises at the front part of the narrower pipe. Everyone knows that the water-jet which comes out of a pipe reaches farther if we narrow the pipe. That happens because higher pressure occurs in the front part. So, HIGHER PRESSURE within the plus-side of the water-body, while LOWER PRESSURE within its minus-side. But could the water-body with the higher pressure in its plus-side and the lower-pressure in its minus-side exist without a material environment, that is, without the surrounding air? No, it could not. The surrounding air is an inevitable actor in the whole story. I want here to stress that in the case of the moving solid body, the higher and the lower pressure arise in the surrounding air, while in the case of the moving liquid body, they arise within it. Let us get back to the light. When the light propagates through the void space, then there is nothing around it to strike its body in, so it propagates freely. But when there is more or less transparent matter on its way of propagation, then it experiences resistance, so that higher light-pressure arises in the front of its body, while lower light-pressure in the back. The higher light-pressure manifests itself as yellow-red, the lower pressure as violet-cyan. When a beam of light propagates through space, its frontal surface is at right angle to the direction of propagation. We can call it a frontal propagation of light. But when the beam is refracted, then it propagates sideways, meaning that its frontal surface is no longer perpendicular to the direction of propagation. We can call it a sideways propagation of light. These two ways of propagation can be imagined as follows: imagine two threads stretched across a room, one horizontally, the other diagonally. On each of the threads is hanging a pierced sheet of paper. We are moving the two sheets along the threads so that they are always in a vertical position. In the figure (a) below is represented the frontal propagation, while in the figure (b) the sideways propagation. The sheet in the figure (b) does not have to be necessarily vertical. It only must not be at right angle to the direction of the thread. Please look at the diagram below: A beam of light is refracted. After the refraction, besides the normal component, the beam gets an additional component in the direction marked with the black arrows. Higher light-pressure arises at the front of this component (i.e. plus-colors), while lower light-pressure (i.e. minus-colors) at its back. But these different light-pressures can occur due to the surrounding air, similarly to the cases of the solid and the liquid body. In other words, if we place a prism or a diffraction grating in a very high vacuum, then I claim that the refracted or diffracted white light will remain white after passing through them. Now, please look at this screenshot from the video: A beam of light has passed through the prism, but the colored boundaries are covered with black papers. Let’s say that the source of light and the prism are placed in a black box and you see only the beam presented in the screenshot. Then someone asks you: He: What do you see? You: A beam of white light. He: Is it a normal light? You: What kind of question is that? Of course it is a normal white light! He: No, it is not a normal light. Watch now! And then he places an object in the middle of the beam (screenshot below). He: Does a normal light throw a shadow like this?! You: No, it doesn’t … then, what kind of light is this? He: It’s not a normal, but a slanted light. Let us now move to the experiments when only one colored ray of the so-called Goethe’s spectrum passes through a narrow slit (screenshot below): There are actually three cases: 1) the cyan ray passes through the slit; after that we see a green ray and a blue ray bound together; 2) the magenta ray (the author of the video calls it purple; Goethe called it also purple) passes through the slit; after that we see a red ray and a blue ray separated from each other; 3) the yellow ray passes through the slit; after that we see a green ray and a blue ray bound together. In the screenshot above only the second case is presented for the sake of shortness. The magenta arrow is added by me to stress that is, the ray has still its own color in the close vicinity of the slit. The same applies for the cyan ray and the yellow ray when they exit the slit. Before I explain what is going on here, let me tell you something else. Please look at the figure below: The magnetic field of the magnet is weaker at a greater distance from the magnet’s pole (figure a). At a greater distance than d, we could say that the strength of the magnetic field is practically zero. The weakening of the strength is symbolically represented by the different shades of gray. The weakening is also symbolically represented by the red and the blue triangle in the figure (b). If the two identical magnets are brought at the distance ‘d’ (or less than ‘d’) without allowing them to come together, then in the interspace between them there is a uniform magnetic field because the two fields complement each other. This means that the strength of the magnetic field is the same in every point of the interspace (figure c). The magnetic field is uniform in terms of strength, but it is not homogeneous in terms of polarity. The Plus and the Minus retain their character just as before the bringing of the magnets close to each other. Something similar to the things just discussed we have with light. Look please at the screenshot below: The light above the plate’s shadow and the light below it can be imagined as two separate beams of light. Since these beams are far from each other, there is no interaction between them. It corresponds in a way to the two magnets which are far from each other. Look now at this screenshot: The shadow is now narrow so that an interaction between the beams can occur. The Plus from below meets the Minus from above, that is, the red color meets the blue-violet. Their overlapping bears magenta. This is not the same case as when we mix chemical colors. If we mix acrylic red and acrylic blue-violet, we do get magenta, but we cannot bring the process back, that is, we cannot separate it into two colors. With the light it is possible. On the right of the last image, the corresponding situation with two magnets is presented. When the magnets are close to each other, then their fields interact, but, as I said before, the Plus and the Minus retain their character. In relation to this, please read (link at the end of this passage) about another hoax of the contemporary science, the so-called Fleming’s left hand rule. This rule states that if a current-carrying conductor is placed in a uniform magnetic field, then it will experience a force which is perpendicular to the magnetic lines of force. This is true only in the case when the conductor is placed exactly in the middle between the magnets, where the strength of the Plus and the Minus are equal. In every other case it is not true that the force acts perpendicularly to the magnetic lines of force. (see these articles Is the Fleming’s left hand rule valid? The plane which is exactly between the magnets corresponds in a sense to the magenta color of the Goethe’s spectrum. Now, let’s get back to this screenshot: What is actually going on here? The magenta ray enters an environment of low light-pressure, i.e. the pressure around the ray suddenly drops. Therefore, it is a suitable environment for it to dissolve in the original Plus and Minus components. Please note a very interesting detail in this process. Before the slit in the last screenshot, the magenta ray comes about through mixing of the red ray from below with the blue-violet from above. After the slit the ray splits into a red ray above, while the blue-violet one is below, that is, the rays have exchanged the places. What does this tell? It tells that this ray behaves as the original refracted light (marked with the added three-colored arrow) although it is born from rays of reverse order. But we can say also otherwise: the red and the blue-violet ray retain their own directions just as if they were not mixed before the slit. Look now at this screenshot: In this case the magenta ray doesn’t split into two. Why? Because it enters an environment of high light-pressure. The forces around it are so strong that it cannot fall apart. I leave the other variations of the experiments to the reader to try to explain them on his/her own. Here are some important articles of mine related to this post: Why is the sky blue? How does light make colors appear? Is the designation "positive" and "negative" in electricity arbitrary? P.S. The author of the video succeeded to split also the green ray in its constituent parts, yellow and cyan, but it is not presented in the video. It is presented on his website. Here is the link where you can find this photo: Inverted spectra of monochromatic rays
    -1 points
  13. My pleasure. Watching the bias train for too long makes me want to comment, I gotta work on that.
    -2 points
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.