Orion1

Senior Members
  • Content Count

    121
  • Joined

  • Last visited

Community Reputation

3 Neutral

About Orion1

  • Rank
    Baryon

Profile Information

  • Location
    Terra
  • Interests
    Science
  • College Major/Degree
    Physics
  • Favorite Area of Science
    Physics

Recent Profile Visitors

The recent visitors block is disabled and is not being shown to other users.

  1. Affirmative, revision complete. Derivation of neutrino mass from neutrino scattering: [math]\;[/math] [math]\theta[/math] - scattered neutrino angle [math]\phi[/math] - electron recoil angle [math]E_{\nu i}[/math] - initial neutrino total energy [math]E_{\nu f}[/math] - final neutrino total energy [math]E_{e}[/math] - electron total energy [math]E_{\nu}[/math] - neutrino total energy Scattered particles rebounding with relativistic momentum have total energy: [math]E_{e} = \gamma_{e} m_{e} c^{2} \; \; \; \; \; \; E_{\nu} = \gamma_{\nu} m_{\nu} c^{2}[/math] Where [math]m_{e}[/math] and [math]m_{\nu}[/math] are the particle rest masses. [math]\gamma_{e}[/math] and [math]\gamma_{\nu}[/math] are the Lorentz factors. (ref. 1) [math]\;[/math] Observational measurements of both particle total energy and velocity, it is possible to calculate the particle rest masses [math]m_{e}[/math] and [math]m_{\nu}[/math]: [math]\boxed{m_{e} = \frac{E_{e}}{\gamma_{e} c^{2}}} \; \; \; \; \; \; \boxed{m_{\nu} = \frac{E_{\nu}}{\gamma_{\nu} c^{2}}} \tag{0}[/math] [math]\;[/math] [math]E_{e} \sin \phi = E_{\nu f} \sin \theta \tag{1}[/math] [math]\;[/math] [math]E_{e} \cos \phi + E_{\nu f} \cos \theta = E_{\nu i} \tag{2}[/math] [math]\;[/math] Isolate [math]E_{e} \cos \phi[/math] from equation (2): [math]E_{e} \cos \phi = E_{\nu i} - E_{\nu f} \cos \theta \tag{3}[/math] [math]\;[/math] Divide equation (1) by equation (3) for an expression for [math]\tan \phi[/math]. [math]\;[/math] [math]\tan \phi = \frac{E_{\nu f} \sin \theta}{E_{\nu i} - E_{\nu f} \cos \theta} = \frac{\sin \theta}{\frac{E_{\nu i}}{E_{\nu f}} - \cos \theta} \tag{4}[/math] [math]\;[/math] Acquire a substitution for [math]\frac{E_{\nu i}}{E_{\nu f}}[/math] to eliminate [math]E_{\nu f}[/math]. Use the Compton equation, which can be rearranged to yield [math]\frac{\lambda_{\nu f}}{\lambda_{\nu i}} = \frac{E_{\nu i}}{E_{\nu f}}[/math] in terms of [math]\lambda_{\nu i}[/math] alone. [math]\;[/math] [math]\frac{\lambda_{\nu f}}{\lambda_{\nu i}} = \frac{E_{\nu i}}{E_{\nu f}} \tag{5}[/math] [math]\;[/math] [math]\frac{\lambda_{\nu f}}{\lambda_{\nu i}} = \frac{E_{\nu i}}{E_{\nu f}} = 1 + \frac{E_{\nu i}}{E_{e}} \left(1 - \cos \theta \right) = 1 + \frac{\gamma_{\nu} m_{\nu} c^2}{\gamma_{e} m_{e} c^2} \left(1 - \cos \theta \right) = 1 + \frac{\gamma_{\nu} m_{\nu}}{\gamma_{e} m_{e}} \left(1 - \cos \theta \right) \tag{6}[/math] [math]\;[/math] Substituting equation (6) into equation (4) and eliminate [math]E_{\nu i}[/math] and [math]E_{\nu f}[/math] in favor of [math]m_{\nu}[/math] alone. [math]\tan \phi = \frac{\sin \theta}{\frac{E_{\nu i}}{E_{\nu f}} - \cos \theta} = \frac{\sin \theta}{1 + \frac{\gamma_{\nu} m_{\nu}}{\gamma_{e} m_{e}} \left(1 - \cos \theta \right) - \cos \theta} = \frac{\sin \theta}{\left(1 + \frac{\gamma_{\nu} m_{\nu}}{\gamma_{e} m_{e}} \right)\left(1 - \cos \theta \right)} \tag{7}[/math] [math]\;[/math] Utilizing a trigonometric identity produces the desired result, specifically: [math]\frac{1 - \cos \theta}{\sin \theta} = \tan \left(\frac{\theta}{2} \right) \tag{8}[/math] [math]\;[/math] Substituting this trigonometric identity into equation (7) results in: [math]\left(1 + \frac{\gamma_{\nu} m_{\nu}}{\gamma_{e} m_{e}} \right) \tan \phi = \cot \frac{\theta}{2} \tag{9}[/math] [math]\;[/math] Solve for neutrino rest mass [math]m_{\nu}[/math]: [math]\tan \phi + \frac{\gamma_{\nu} m_{\nu}}{\gamma_{e} m_{e}} \tan \phi = \cot \frac{\theta}{2} \tag{10}[/math] [math]\;[/math] [math]\frac{\gamma_{\nu} m_{\nu}}{\gamma_{e} m_{e}} \tan \phi = \left(\cot \frac{\theta}{2} - \tan \phi \right) \tag{11}[/math] [math]\;[/math] Electron-neutrino scattering neutrino rest mass: [math]\boxed{m_{\nu} = \frac{\gamma_{e} m_{e} \cot \phi}{\gamma_{\nu}} \left(\cot \frac{\theta}{2} - \tan \phi \right)} \tag{12}[/math] [math]\;[/math] Nuclear-neutrino scattering neutrino rest mass: [math]\boxed{m_{\nu} = \frac{\gamma_{n} m_{n} \cot \phi}{\gamma_{\nu}} \left(\cot \frac{\theta}{2} - \tan \phi \right)} \tag{13}[/math] [math]m_{n}[/math] - nuclear rest mass [math]\;[/math] Electron interaction neutrino scattering angle [math]\theta[/math]: [math]\boxed{\theta = 2 \operatorname{arccot} \left(\frac{\left(\gamma_{e} m_{e} + \gamma_{\nu} m_{\nu} \right) \tan \phi}{\gamma_{e} m_{e}} \right)} \tag{14}[/math] [math]\;[/math] Neutrino interaction electron recoil angle [math]\phi[/math]: [math]\boxed{\phi = \arctan \left(\frac{\gamma_{e} m_{e} \cot \frac{\theta}{2}}{\gamma_{e} m_{e} + \gamma_{\nu} m_{\nu}} \right)} \tag{15}[/math] [math]\;[/math] Nuclear interaction neutrino scattering angle [math]\theta[/math]: [math]\boxed{\theta = 2 \operatorname{arccot} \left(\frac{\left(\gamma_{n} m_{n} + \gamma_{\nu} m_{\nu} \right) \tan \phi}{\gamma_{n} m_{n}} \right)} \tag{16}[/math] [math]\;[/math] Neutrino interaction nuclear recoil angle [math]\phi[/math]: [math]\boxed{\phi = \arctan \left(\frac{\gamma_{n} m_{n} \cot \frac{\theta}{2}}{\gamma_{n} m_{n} + \gamma_{\nu} m_{\nu}} \right)} \tag{17}[/math] [math]\;[/math] Any discussions and/or peer reviews about this specific topic thread? [math]\;[/math] Reference: Wikipedia - Lorentz factor: (ref. 1) https://en.wikipedia.org/wiki/Lorentz_factor Wikipedia - Compton scattering - Derivation of the scattering formula: https://en.wikipedia.org/wiki/Compton_scattering#Derivation_of_the_scattering_formula Physics 253 - Compton Scattering - Patrick LeClair http://pleclair.ua.edu//PH253/Notes/compton.pdf Orion1 - Neutrino mass from Fermi-Dirac statistics...: https://www.scienceforums.net/topic/90189-neutrino-mass-from-fermi-dirac-statistics/ Science News - Neutrinos seen scattering off an atom’s nucleus for the first time: https://www.sciencenews.org/article/neutrinos-seen-scattering-atoms-nucleus-first-time
  2. De Broglie relativistic momentum: (ref. 1) [math]p = \frac{\hbar}{\overline{\lambda}} = \gamma m_0 v[/math] [math]\;[/math] Relativistic energy-momentum relation and relativistic mass particle total energy identity: [math]\boxed{E_{t} = \sqrt{\left(m_{0} c^{2} \right)^{2} + \left(pc \right)^{2}} = \gamma m_0 c^2}[/math] [math]\;[/math] [math]\boxed{E_{t} = \sqrt{\left(m_{0} c^{2} \right)^{2} + \left(\frac{\hbar c}{\overline{\lambda}} \right)^{2}} = \gamma m_0 c^2}[/math] [math]\;[/math] Is this equation an identity for a relativistic mass particle? [math]\;[/math] Any discussions and/or peer reviews about this specific topic thread? [math]\;[/math] Reference: Wikipedia - Matter wave: (ref. 1) https://en.wikipedia.org/wiki/Matter_wave
  3. Relativistic energy-momentum relation total energy: (ref. 1) [math]E_{t}^{2} = \left(m_{0} c^{2} \right)^{2} + \left(pc \right)^{2} [/math] [math]E_{t} = \sqrt{\left(m_{0} c^{2} \right)^{2} + \left(pc \right)^{2}}[/math] [math]\;[/math] Relativistic mass particle total energy: (ref. 2) [math]E_{t} = \gamma m_0 c^{2}[/math] [math]\;[/math] Relativistic energy-momentum relation and relativistic mass particle total energy identity: [math]\boxed{E_{t} = \sqrt{\left(m_{0}c^{2} \right)^{2} + \left(pc \right)^{2}} = \gamma m_0 c^2}[/math] [math]\;[/math] Is this equation an identity for a relativistic mass particle? [math]\;[/math] Any discussions and/or peer reviews about this specific topic thread? [math]\;[/math] Reference: Wikipedia - Energy-momentum relation: (ref. 1) https://en.wikipedia.org/wiki/Energy–momentum_relation#Special_relativity Wikipedia - Energy-momentum relation - heuristic approach for massive particles: (ref. 2) https://en.wikipedia.org/wiki/Energy–momentum_relation#Heuristic_approach_for_massive_particle
  4. Derivation of neutrino mass from neutrino scattering: [math]\;[/math] [math]\theta[/math] - scattered neutrino angle [math]\phi[/math] - electron recoil angle [math]p_{i}[/math] - initial neutrino momentum [math]p_{f}[/math] - final neutrino momentum [math]p_{e}[/math] - electron momentum [math]\;[/math] Scattered particles rebounding with relativistic momentum have total energy: [math]E_{e} = \gamma m_{0e} c^{2} = m_{e} c^{2} \; \; \; \; \; \; E_{\nu} = \gamma m_{0\nu} c^{2} = m_{\nu} c^{2}[/math] Where [math]m_{e}[/math] and [math]m_{\nu}[/math] are the relativistic particle masses. [math]\;[/math] Observational measurements of both particle total energy and velocity, it is possible to calculate the rest particle masses [math]m_{0e}[/math] and [math]m_{0\nu}[/math]: [math]\boxed{m_{0e} = \frac{E_{e}}{\gamma c^{2}}} \; \; \; \; \; \; \boxed{m_{0\nu} = \frac{E_{\nu}}{\gamma c^{2}}} \tag{0}[/math] [math]\;[/math] [math]p_{e} \sin \phi = p_{f} \sin \theta \tag{1}[/math] [math]\;[/math] [math]p_{e} \cos \phi + p_{f} \cos \theta = p_{i} \tag{2}[/math] [math]\;[/math] Isolate [math]p_{e} \cos \phi[/math] from equation [math](2)[/math]: [math]p_{e} \cos \phi = p_{i} - p_{f} \cos \theta \tag{3}[/math] [math]\;[/math] Divide equation [math](1)[/math] by equation [math](3)[/math] for an expression for [math](3)[/math] for an expression for [math]\tan \phi[/math]: [math]\;[/math] [math]\tan \phi = \frac{p_{f} \sin \theta}{p_{i} - p_{f} \cos \theta} = \frac{\sin \theta}{\frac{p_{i}}{p_{f}} - \cos \theta} \tag{4}[/math] [math]\;[/math] Acquire a substitution for [math]\frac{p_{i}}{p_{f}}[/math] to eliminate [math]p_{f}[/math]. Use the Compton equation, which can be rearranged to yield [math]\frac{\lambda_{f}}{\lambda_{i}} = \frac{p_{i}}{p_{f}}[/math] in terms of [math]\lambda_{i}[/math] alone. [math]\;[/math] [math]\frac{\lambda_{f}}{\lambda_{i}} = \frac{p_{i}}{p_{f}} \tag{5}[/math] [math]\;[/math] [math]\frac{\lambda_{f}}{\lambda_{i}} = \frac{p_{i}}{p_{f}} = 1 + \frac{E_{\nu}}{E_{e}} \left(1 - \cos \theta \right) = 1 + \frac{m_{\nu} c^2}{m_{e} c^2} \left(1 - \cos \theta \right) = 1 + \frac{m_{\nu}}{m_{e}} \left(1 - \cos \theta \right) \tag{6}[/math] [math]\;[/math] Substituting equation [math](6)[/math] into equation [math](4)[/math], and eliminate [math]p_{i}[/math] and [math]p_{f}[/math] in favor of [math]m_{\nu}[/math] alone. [math]\;[/math] [math]\tan \phi = \frac{\sin \theta}{\frac{p_{i}}{p_{f}} - \cos \theta} = \frac{\sin \theta}{1 + \frac{m_{\nu}}{m_{e}} \left(1 - \cos \theta \right) - \cos \theta} = \frac{\sin \theta}{\left(1 + \frac{m_{\nu}}{m_{e}} \right)\left(1 - \cos \theta \right)} \tag{7}[/math] [math]\;[/math] Utilizing a trigonometric identity produces the desired result, specifically: [math]\frac{1 - \cos \theta}{\sin \theta} = \tan \left(\frac{\theta}{2} \right) \tag{8}[/math] [math]\;[/math] Substituting this trigonometric identity into equation [math](7)[/math] results in: [math]\left(1 + \frac{m_{\nu}}{m_{e}} \right) \tan \phi = \cot \frac{\theta}{2} \tag{9}[/math] [math]\;[/math] Solve for neutrino mass [math]m_{\nu}[/math]: [math]\tan \phi + \frac{m_{\nu}}{m_{e}} \tan \phi = \cot \frac{\theta}{2} \tag{10}[/math] [math]\;[/math] [math]\frac{m_{\nu}}{m_{e}} \tan \phi = \left(\cot \frac{\theta}{2} - \tan \phi \right) \tag{11}[/math] [math]\;[/math] Electron-neutrino scattering neutrino mass: [math]\boxed{m_{\nu} = m_{e} \cot \phi \left(\cot \frac{\theta}{2} - \tan \phi \right)} \tag{12}[/math] [math]\;[/math] Nuclear-neutrino scattering neutrino mass: [math]\boxed{m_{\nu} = m_{n} \cot \phi \left(\cot \frac{\theta}{2} - \tan \phi \right)} \tag{13}[/math] [math]\;[/math] [math]m_{n}[/math] - nuclear mass [math]\;[/math] Electron interaction neutrino scattering angle [math]\theta[/math]: [math]\boxed{\theta = 2 \operatorname{arccot} \left(\frac{\left(m_{e} + m_{\nu} \right) \tan \phi}{m_{e}} \right)} \tag{14}[/math] [math]\;[/math] Neutrino interaction electron recoil angle [math]\phi[/math]: [math]\boxed{\phi = \arctan \left(\frac{m_{e} \cot \frac{\theta}{2}}{m_{e} + m_{\nu}} \right)} \tag{15}[/math] [math]\;[/math] Nuclear interaction neutrino scattering angle [math]\theta[/math]: [math]\boxed{\theta = 2 \operatorname{arccot} \left(\frac{\left(m_{n} + m_{\nu} \right) \tan \phi}{m_{n}} \right)} \tag{16}[/math] [math]\;[/math] Neutrino interaction nuclear recoil angle [math]\phi[/math]: [math]\boxed{\phi = \arctan \left(\frac{m_{n} \cot \frac{\theta}{2}}{m_{n} + m_{\nu}} \right)} \tag{17}[/math] [math]\;[/math] Any discussions and/or peer reviews about this specific topic thread? [math]\;[/math] Reference: Wikipedia - Compton scattering - Derivation of the scattering formula: https://en.wikipedia.org/wiki/Compton_scattering#Derivation_of_the_scattering_formula Physics 253 - Compton Scattering - Patrick LeClair http://pleclair.ua.edu//PH253/Notes/compton.pdf Orion1 - Neutrino mass from Fermi-Dirac statistics...: https://www.scienceforums.net/topic/90189-neutrino-mass-from-fermi-dirac-statistics/ Science News - Neutrinos seen scattering off an atom’s nucleus for the first time: https://www.sciencenews.org/article/neutrinos-seen-scattering-atoms-nucleus-first-time
  5. Orion1

    The Lagrangian equation...

    Please cite which Wikipedia reference? Also, I am not certain which 'discussion' with 'list of references' that is being inferred, please clarify. (ref. 7) Server guideline rule Section 2 (7) prohibits me from directing discussion to another server. My apology if my stringent interpretation of this rule is overtly strict or interpreted as a deflection or deferment, please clarify. (ref. 7) Do you agree with this equation for deriving a relativistic lagrangian? Relativistic Lagrangian integration via substitution: [math]\mathcal{L} = \sum_{1}^{n} E_{k}\left(n \right) - \sum_{1}^{n} E_{p}\left(n \right) = \sum_{1}^{n} \mathcal{L}\left(n \right) = 0[/math] Relativistic Lagrangian: [math]\boxed{\mathcal{L} = \sum_{1}^{n} \mathcal{L}\left(n \right) = 0}[/math] Affirmative, revision complete. [math]\;[/math] Einstein's field equations: [math]G_{\mu \nu} = R_{\mu \nu} - \frac{1}{2} R g_{\mu \nu} = \frac{8 \pi G}{c^{4}} T_{\mu \nu}[/math] [math]\;[/math] Einstein's field equations in natural units: [math]G_{\mu \nu} = R_{\mu \nu} - \frac{1}{2} R g_{\mu \nu} = 8 \pi T_{\mu \nu}[/math] [math]\;[/math] Einstein's field equations Ricci tensor in natural units: [math]\boxed{ R_{\mu \nu} = 8 \pi T_{\mu \nu} + \frac{1}{2} R g_{\mu \nu}}[/math] [math]\;[/math] Lagrangian equation: [math]\mathcal{L} = \underbrace{ \mathbb{R} }_{GR} - \overbrace{\underbrace{\frac{1}{4} F_{\mu \nu} F^{\mu \nu}}_{Yang-Mills}}^{Maxwell} + \underbrace{i \overline{\psi} \gamma^\mu D_\mu \psi}_{Dirac} + \underbrace{|D_\mu h|^2-V\left(|h| \right)}_{Higgs} + \underbrace{h \overline{\psi} \psi}_{Yukawa} = 0[/math] [math]\;[/math] General relativity Lagrangian equation: [math]\boxed{\mathcal{L} = \underbrace{8 \pi T_{\mu \nu} + \frac{1}{2} R g_{\mu \nu}}_{GR} - \overbrace{\underbrace{\frac{1}{4} F_{\mu \nu} F^{\mu \nu}}_{Yang-Mills}}^{Maxwell} + \underbrace{i \overline{\psi} \gamma^\mu D_\mu \psi}_{Dirac} + \underbrace{|D_\mu h|^2-V\left(|h| \right)}_{Higgs} + \underbrace{h \overline{\psi} \psi}_{Yukawa} = 0}[/math] [math]\;[/math] A massless gravitational wave is still massless on a Planck scale, and the result is still a metric tensor field. [math]\;[/math] Metric tensor field: (ref. 1, pg. 21, eq. 1.68) [math]T^{' \mu \nu} \left(x' \right) = \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} T^{\alpha \beta}\left(x \right)[/math] [math]\;[/math] The general relativity Ricci tensor is a metric tensor field: [math]\boxed{R_{\mu \nu} = T^{' \mu \nu} \left(x' \right)}[/math] [math]\;[/math] Lagrangian equation for a massless Planck graviton: [math]\boxed{\mathcal{L} = \underbrace{ \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} T^{\alpha \beta}\left(x \right) }_{QG} - \overbrace{\underbrace{\frac{1}{4} F_{\mu \nu} F^{\mu \nu}}_{Yang-Mills}}^{Maxwell} + \underbrace{i \overline{\psi} \gamma^\mu D_\mu \psi}_{Dirac} + \underbrace{|D_\mu h|^2-V\left(|h| \right)}_{Higgs} + \underbrace{h \overline{\psi} \psi}_{Yukawa} = 0}[/math] [math]\;[/math] General relativity and Planck quantum gravity identity: [math]\boxed{8 \pi T_{\mu \nu} + \frac{1}{2} R g_{\mu \nu} = \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} T^{\alpha \beta} \left(x \right)}[/math] [math]\;[/math] General relativity weak field limit spacetime metric: (ref. 2) [math]g_{\mu \nu} = \eta_{\mu \nu} + h_{\mu \nu}[/math] [math]\;[/math] [math]\eta_{\mu \nu}[/math] - perturbed nondynamical background metric [math]h_{\mu \nu}[/math] - true metric deviation of [math]g_{\mu \nu}[/math] from flat spacetime [math]\;[/math] [math]h_{\mu \nu}[/math] must be negligible compared to [math]\eta_{\mu \nu}[/math]: [math]|h_{\mu \nu}| \ll 1[/math] [math]\;[/math] General relativity weak field limit spacetime metric and Planck quantum gravity identity 1: [math]\boxed{8 \pi T_{\mu \nu} + \frac{1}{2} R \left(\eta_{\mu \nu} + h_{\mu \nu} \right) = \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} T^{\alpha \beta} \left(x \right)}[/math] [math]\;[/math] General relativity weak field limit spacetime metric and Planck quantum gravity identity 2: [math]\boxed{8 \pi T_{\mu \nu} = \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} T^{\alpha \beta} \left(x \right) - \frac{1}{2} R \left(\eta_{\mu \nu} + h_{\mu \nu} \right)}[/math] [math]\;[/math] General relativity Ricci scalar curvature: (ref. 3, ref. 4) [math]R = g^{\mu \nu } R_{\mu \nu}[/math] [math]\;[/math] General relativity Ricci scalar curvature and Planck quantum gravity scalar curvature: [math]R = g^{\mu \nu } R_{\mu \nu} = g^{\mu \nu } \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} T^{\alpha \beta} \left(x \right)[/math] [math]\boxed{R = g^{\mu \nu } \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} T^{\alpha \beta} \left(x \right)}[/math] [math]\;[/math] General relativity weak field limit spacetime metric and Planck quantum gravity identity 2 integration via substitution: [math]8 \pi T_{\mu \nu} = \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} T^{\alpha \beta} \left(x \right) - \frac{1}{2} g^{\mu \nu} \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} T^{\alpha \beta} \left(x \right) \left(\eta_{\mu \nu} + h_{\mu \nu} \right) = \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} T^{\alpha \beta} \left(x \right) \left(1 - \frac{1}{2} g^{\mu \nu}\left(\eta_{\mu \nu} + h_{\mu \nu} \right) \right)[/math] [math]\;[/math] General relativity weak field limit spacetime metric and Planck quantum gravity identity 3: [math]\boxed{8 \pi T_{\mu \nu} = \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} T^{\alpha \beta} \left(x \right) \left(1 - \frac{1}{2} g^{\mu \nu}\left(\eta_{\mu \nu} + h_{\mu \nu} \right) \right)}[/math] [math]\;[/math] General relativity weak field limit spacetime inverse metric: (ref. 2) [math]g^{\mu \nu} = \eta^{\mu \nu} - h^{\mu \nu}[/math] [math]\;[/math] General relativity weak field limit spacetime metric and Planck quantum gravity identity 4: [math]\boxed{8 \pi T_{\mu \nu} = \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} T^{\alpha \beta} \left(x \right) \left(1 - \frac{1}{2} \left(\eta^{\mu \nu} - h^{\mu \nu} \right)\left(\eta_{\mu \nu} + h_{\mu \nu} \right) \right)}[/math] [math]\;[/math] [math]\Lambda^{\mu}_{\alpha} = \frac{\partial \xi^{\mu}}{\partial x^{\alpha}} \; \; \; \; \; \; \Lambda^{\nu}_{\beta} = \frac{\partial \xi^{\nu}}{\partial x^{\beta}}[/math] [math]\;[/math] [math]x^{\alpha} = \left(ct, r, \theta, \phi \right) \; \; \; \; \; \; x^{\beta} = \left(ct, r, \theta, \phi \right)[/math] [math]\;[/math] General relativity weak field limit spacetime metric and Planck quantum gravity identity 5: (ref. 5) [math]\boxed{8 \pi T_{\mu \nu} = \left(\frac{\partial \xi^{\mu}}{\partial x^{\alpha}} \right)\left(\frac{\partial \xi^{\nu}}{\partial x^{\beta}} \right) T^{\alpha \beta} \left(x \right) \left(1 - \frac{1}{2} \left(\eta^{\mu \nu} - h^{\mu \nu} \right)\left(\eta_{\mu \nu} + h_{\mu \nu} \right) \right)}[/math] [math]\;[/math] General relativity stress-energy tensor: [math]T_{\mu \nu} = \pm \left(\begin{matrix} -\rho & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & p \end{matrix} \right)[/math] [math]\;[/math] In spherical coordinates [math](ct, r, \theta, \phi)[/math] the Minkowski flat spacetime metric takes the form: [math]ds^{2} = -c^{2} dt^{2} + dr^{2} + r^{2} d\theta^{2} + r^{2} \sin^{2} \theta \; d\phi^{2}[/math] [math]\;[/math] General relativity Minkowski flat spacetime metric tensor: [math]T^{\alpha \beta} \left(x \right) = \pm \begin{pmatrix} -c^{2} dt^{2} & 0 & 0 & 0 \\ 0 & dr^{2} & 0 & 0 \\ 0 & 0 & r^{2} d\theta^{2} & 0 \\ 0 & 0 & 0 & r^{2} \sin^{2} \theta \; d\phi^{2} \end{pmatrix}[/math] [math]\;[/math] General relativity Minkowski flat spacetime metric: [math]\eta_{\mu \nu} = \pm \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}[/math] [math]\;[/math] General relativity Minkowski flat spacetime metric is equivalent to the inverse metric: (ref. 6) [math]\boxed{\eta_{\mu \nu} = \eta^{\mu \nu}}[/math] [math]\;[/math] General relativity Minkowski flat spacetime perturbed nondynamical background metric deviation is equivalent to the inverse metric deviation: [math]\boxed{h_{\mu \nu} = h^{\mu \nu}}[/math] [math]\;[/math] Any discussions and/or peer reviews about this specific topic thread? Reference: Lorentz Group and Lorentz Invariance: (ref. 1) https://gdenittis.files.wordpress.com/2016/04/ayudantiavi.pdf Wikipeda - General relativity - linearized gravity: (ref. 2) https://en.wikipedia.org/wiki/Linearized_gravity Wikipeda - General relativity: (ref. 3) https://en.wikipedia.org/wiki/General_relativity#Einstein's_equations Wikipeda - General relativity: (ref. 4) https://en.wikipedia.org/wiki/Metric_tensor_(general_relativity)#Einstein's_equations Wikipeda - General relativity - Metric tensor - Local coordinates and matrix representations: (ref. 5) https://en.wikipedia.org/wiki/Metric_tensor_(general_relativity)#Local_coordinates_and_matrix_representations Wikipeda - Lorentz covariance: (ref. 6) https://en.wikipedia.org/wiki/Lorentz_covariance Science Forums - Guidelines: (ref. 7) https://www.scienceforums.net/guidelines/
  6. Orion1

    The Lagrangian equation...

    Affirmative, is this an identity of the lagrangian Dirac equation with EM interaction? [math]\mathcal{L} = \underbrace{\overline{\psi} \left(i \gamma^{\mu} D_{\mu} - m \right) \psi}_{Dirac} - \underbrace{e \overline{\psi} \gamma^{\mu} Q \psi A_{\mu}}_{EM \text{ } interaction}[/math] [math]\;[/math] [math]\mathcal{L} = \overline{\psi} \left(i \gamma^{\mu} D_{\mu} - m \right) \psi - e \overline{\psi} \gamma^{\mu} Q \psi A_{\mu}[/math] [math]\;[/math] [math]\mathcal{L} = \overline{\psi} i \gamma^{\mu} D_{\mu} \psi - \overline{\psi} m \psi - e \overline{\psi} \gamma^{\mu} Q \psi A_{\mu}[/math] [math]\;[/math] [math]\mathcal{L} = \overline{\psi} i \gamma^{\mu} D_{\mu} \psi - e \overline{\psi} \gamma^{\mu} Q \psi A_{\mu} - \overline{\psi} m \psi[/math] [math]\;[/math] [math]\mathcal{L} = \overline{\psi} \gamma^{\mu} \left(i D_{\mu} - e Q A_{\mu} \right)\psi - \overline{\psi} m \psi[/math] [math]\;[/math] [math]\boxed{\mathcal{L} = \overline{\psi} \left[\gamma^{\mu}\left(i D_{\mu} - e Q A_{\mu} \right) - m \right] \psi}[/math]
  7. Orion1

    The Lagrangian equation...

    The scientific author of the original lagrangian equation appears to be modeling a massless and chargeless quantum field interaction. [math]\;[/math] General relativity Lagrangian equation with mass and charge and a GUT quaternion: (ref. 1, ref. 2, pg. 8, eq. 2.8) [math]\boxed{\mathcal{L} = \underbrace{8 \pi T_{\mu \nu} + \frac{1}{2} R g_{\mu \nu}}_{GR} - \overbrace{\underbrace{\frac{1}{4} F_{\mu \nu} F^{\mu \nu}}_{Yang-Mills}}^{Maxwell} + \underbrace{\overline{\psi} \left(i \gamma^{\mu} D_{\mu} - m \right) \psi}_{Dirac} - \underbrace{e \overline{\psi} \gamma^{\mu} Q \psi A_{\mu}}_{EM \text{ } interaction} + \underbrace{|D_{\mu} h|^2 - V\left(|h| \right)}_{Higgs} + \underbrace{\overline{\psi^{\alpha}} \gamma_{\mu} \left(A_{\mu}^{\alpha \beta} \psi^{\beta} + \psi^{\alpha} B_{\mu} \right)}_{GUT \text{ } quaternion} = 0}[/math] [math]\;[/math] Reference: Wikipedia - Grand Unified Theory - Symplectic groups and quaternion representations: (ref. 1) https://en.wikipedia.org/wiki/Grand_Unified_Theory#Symplectic_groups_and_quaternion_representations Search For The Standard Model Higgs Boson In Leptons Plus Jets Final States: (ref. 2) https://www-d0.fnal.gov/results/publications_talks/thesis/nguyen/thesis.pdf
  8. Orion1

    The Lagrangian equation...

    There does not appear to be a scientific consensus for the lagrangian equation for GUT Pati-Salam models. The integration strategy appears to involve modeling both gauge symmetry and particle hierarchy into the Yukawa lagrangian. [math]\;[/math] Yukawa lagrangian: [math]\mathcal{L} = \underbrace{h \overline{\psi} \psi}_{Yukawa} = 0[/math] [math]\;[/math] However, the GUT quaternion lagrangian equation appears to exhibit both gauge symmety and particle heirarchy and matrix parameters which could be compatible with the SO(10) regime under Pati-Salam. [math]\;[/math] GUT quaternion lagrangian equation: (ref. 1) [math]\mathcal{L} = \overline{\psi^{a}} \gamma_{\mu} \left(A_{\mu}^{ab} \psi^{b} + \psi^{a} B_{\mu} \right)[/math] [math]\;[/math] Because the GUT energy scale is well below the Planck energy scale, the general relativity Lagrangian equation may still be utilized without the introduction of a graviton. [math]\;[/math] GUT energy scale: [math]\Lambda_{\text{GUT}} \approx 10^{16} \; \text{GeV}[/math] [math]\;[/math] Planck energy scale: [math]E_{P} = 1.221 \cdot 10^{19} \; \mathrm {GeV}[/math] [math]\;[/math] General relativity Lagrangian equation with a GUT quaternion: [math]\boxed{\mathcal{L} = \underbrace{8 \pi T_{\mu \nu} + \frac{1}{2} R g_{\mu \nu}}_{GR} - \overbrace{\underbrace{\frac{1}{4} F_{\mu \nu} F^{\mu \nu}}_{Yang-Mills}}^{Maxwell} + \underbrace{i \overline{\psi} \gamma^\mu D_\mu \psi}_{Dirac} + \underbrace{|D_\mu h|^2-V\left(|h| \right)}_{Higgs} + \underbrace{\overline{\psi^{a}} \gamma_{\mu} \left(A_{\mu}^{ab} \psi^{b} + \psi^{a} B_{\mu} \right)}_{\text{GUT quaternion}} = 0}[/math] Reference: Wikipedia - Grand Unified Theory - Symplectic groups and quaternion representations: (ref. 1) https://en.wikipedia.org/wiki/Grand_Unified_Theory#Symplectic_groups_and_quaternion_representations
  9. Orion1

    The Lagrangian equation...

    Affirmative, revision complete. [math]\;[/math] Einstein's field equations: [math]G_{\mu \nu} = R_{\mu \nu} - \frac{1}{2} R g_{\mu \nu} = \frac{8 \pi G}{c^{4}} T_{\mu \nu}[/math] [math]\;[/math] Einstein's field equations in natural units: [math]G_{\mu \nu} = R_{\mu \nu} - \frac{1}{2} R g_{\mu \nu} = 8 \pi T_{\mu \nu}[/math] [math]\;[/math] Einstein's field equations Ricci tensor in natural units: [math]\boxed{ R_{\mu \nu} = 8 \pi T_{\mu \nu} + \frac{1}{2} R g_{\mu \nu}}[/math] [math]\;[/math] Lagrangian equation: [math]\mathcal{L} = \underbrace{ \mathbb{R} }_{GR} - \overbrace{\underbrace{\frac{1}{4} F_{\mu \nu} F^{\mu \nu}}_{Yang-Mills}}^{Maxwell} + \underbrace{i \overline{\psi} \gamma^\mu D_\mu \psi}_{Dirac} + \underbrace{|D_\mu h|^2-V\left(|h| \right)}_{Higgs} + \underbrace{h \overline{\psi} \psi}_{Yukawa} = 0[/math] [math]\;[/math] General relativity Lagrangian equation: [math]\boxed{\mathcal{L} = \underbrace{8 \pi T_{\mu \nu} + \frac{1}{2} R g_{\mu \nu}}_{GR} - \overbrace{\underbrace{\frac{1}{4} F_{\mu \nu} F^{\mu \nu}}_{Yang-Mills}}^{Maxwell} + \underbrace{i \overline{\psi} \gamma^\mu D_\mu \psi}_{Dirac} + \underbrace{|D_\mu h|^2-V\left(|h| \right)}_{Higgs} + \underbrace{h \overline{\psi} \psi}_{Yukawa} = 0}[/math] [math]\;[/math] A massless gravitational wave is still massless on a Planck scale, and the result is still a metric tensor field. [math]\;[/math] Metric tensor field: (ref. 1, pg. 21, eq. 1.68) [math]T^{' \mu \nu} \left(x' \right) = \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} T^{\alpha \beta}\left(x \right)[/math] [math]\;[/math] The general relativity Ricci tensor is a metric tensor field: [math]\boxed{R_{\mu \nu} = T^{' \mu \nu} \left(x' \right)}[/math] [math]\;[/math] Lagrangian equation for a massless Planck graviton: [math]\boxed{\mathcal{L} = \underbrace{ \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} T^{\alpha \beta}\left(x \right) }_{QG} - \overbrace{\underbrace{\frac{1}{4} F_{\mu \nu} F^{\mu \nu}}_{Yang-Mills}}^{Maxwell} + \underbrace{i \overline{\psi} \gamma^\mu D_\mu \psi}_{Dirac} + \underbrace{|D_\mu h|^2-V\left(|h| \right)}_{Higgs} + \underbrace{h \overline{\psi} \psi}_{Yukawa} = 0}[/math] [math]\;[/math] General relativity and Planck quantum gravity identity: [math]\boxed{8 \pi T_{\mu \nu} + \frac{1}{2} R g_{\mu \nu} = \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} T^{\alpha \beta} \left(x \right)}[/math] [math]\;[/math] General relativity weak field limit spacetime metric: (ref. 2) [math]g_{\mu \nu} = \eta_{\mu \nu} + h_{\mu \nu}[/math] [math]\;[/math] [math]\eta_{\mu \nu}[/math] - perturbed non-dynamical background metric [math]h_{\mu \nu}[/math] - true metric deviation of [math]g_{\mu \nu}[/math] from flat spacetime [math]\;[/math] [math]h_{\mu \nu}[/math] must be negligible compared to [math]\eta_{\mu \nu}[/math]: [math]|h_{\mu \nu}| \ll 1[/math] [math]\;[/math] General relativity weak field limit spacetime metric and Planck quantum gravity identity 1: [math]\boxed{8 \pi T_{\mu \nu} + \frac{1}{2} R \left(\eta_{\mu \nu} + h_{\mu \nu} \right) = \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} T^{\alpha \beta} \left(x \right)}[/math] [math]\;[/math] General relativity weak field limit spacetime metric and Planck quantum gravity identity 2: [math]\boxed{8 \pi T_{\mu \nu} = \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} T^{\alpha \beta} \left(x \right) - \frac{1}{2} R \left(\eta_{\mu \nu} + h_{\mu \nu} \right)}[/math] [math]\;[/math] General relativity curvature scalar: (ref. 3) [math]R = g^{\mu \nu } R_{\mu \nu}[/math] [math]\;[/math] General relativity and Planck quantum gravity curvature scalar: [math]R = g^{\mu \nu } R_{\mu \nu} = g^{\mu \nu } \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} T^{\alpha \beta} \left(x \right)[/math] [math]\boxed{R = g^{\mu \nu } \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} T^{\alpha \beta} \left(x \right)}[/math] [math]\;[/math] General relativity weak field limit spacetime metric and Planck quantum gravity identity 2 integration via substitution: [math]8 \pi T_{\mu \nu} = \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} T^{\alpha \beta} \left(x \right) - \frac{1}{2} g^{\mu \nu} \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} T^{\alpha \beta} \left(x \right) \left(\eta_{\mu \nu} + h_{\mu \nu} \right) = \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} T^{\alpha \beta} \left(x \right) \left(1 - \frac{1}{2} g^{\mu \nu}\left(\eta_{\mu \nu} + h_{\mu \nu} \right) \right)[/math] [math]\;[/math] General relativity weak field limit spacetime metric and Planck quantum gravity identity 3: [math]\boxed{8 \pi T_{\mu \nu} = \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} T^{\alpha \beta} \left(x \right) \left(1 - \frac{1}{2} g^{\mu \nu}\left(\eta_{\mu \nu} + h_{\mu \nu} \right) \right)}[/math] [math]\;[/math] General relativity weak field limit spacetime inverse metric: (ref. 2) [math]g^{\mu \nu} = \eta^{\mu \nu} - h^{\mu \nu}[/math] [math]\;[/math] General relativity weak field limit spacetime metric and Planck quantum gravity identity 4: [math]\boxed{8 \pi T_{\mu \nu} = \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} T^{\alpha \beta} \left(x \right) \left(1 - \frac{1}{2} \left(\eta^{\mu \nu} - h^{\mu \nu} \right)\left(\eta_{\mu \nu} + h_{\mu \nu} \right) \right)}[/math] [math]\;[/math] [math]\Lambda^{\mu}_{\alpha} = \frac{\partial \xi^{\mu}}{\partial x^{\alpha}} \; \; \; \; \; \; \Lambda^{\nu}_{\beta} = \frac{\partial \xi^{\nu}}{\partial x^{\beta}}[/math] [math]\;[/math] [math]x^{\alpha} = \left(ct, r, \theta, \phi \right) \; \; \; \; \; \; x^{\beta} = \left(ct, r, \theta, \phi \right)[/math] [math]\;[/math] General relativity weak field limit spacetime metric and Planck quantum gravity identity 5: [math]\boxed{8 \pi T_{\mu \nu} = \left(\frac{\partial \xi^{\mu}}{\partial x^{\alpha}} \right)\left(\frac{\partial \xi^{\nu}}{\partial x^{\beta}} \right) T^{\alpha \beta} \left(x \right) \left(1 - \frac{1}{2} \left(\eta^{\mu \nu} - h^{\mu \nu} \right)\left(\eta_{\mu \nu} + h_{\mu \nu} \right) \right)}[/math] [math]\;[/math] General relativity stress-energy tensor: [math]T_{\mu \nu} = \pm \left(\begin{matrix} -\rho & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & p \end{matrix} \right)[/math] [math]\;[/math] In spherical coordinates [math](ct, r, \theta, \phi)[/math] the Minkowski flat spacetime metric takes the form: [math]ds^{2} = -c^{2} dt^{2} + dr^{2} + r^{2} d\theta^{2} + r^{2} \sin^{2} \theta \; d\phi^{2}[/math] [math]\;[/math] General relativity Minkowski flat spacetime metric tensor: [math]T^{\alpha \beta} \left(x \right) = \pm \begin{pmatrix} -c^{2} dt^{2} & 0 & 0 & 0 \\ 0 & dr^{2} & 0 & 0 \\ 0 & 0 & r^{2} d\theta^{2} & 0 \\ 0 & 0 & 0 & r^{2} d\phi^{2} \end{pmatrix}[/math] [math]\;[/math] General relativity Minkowski flat spacetime metric: [math]\eta_{\mu \nu} = \pm \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}[/math] [math]\;[/math] General relativity Minkowski flat spacetime metric is equivalent to the inverse metric: [math]\boxed{\eta_{\mu \nu} = \eta^{\mu \nu}} \left(ref. 4 \right)[/math] [math]\;[/math] Any discussions and/or peer reviews about this specific topic thread? [math]\;[/math] Reference: Lorentz Group and Lorentz Invariance: (ref. 1) https://gdenittis.files.wordpress.com/2016/04/ayudantiavi.pdf Wikipeda - General relativity - linearized gravity: (ref. 2) https://en.wikipedia.org/wiki/Linearized_gravity Wikipeda - General relativity: (ref. 3) https://en.wikipedia.org/wiki/General_relativity Wikipeda - Lorentz covariance: (ref. 4) https://en.wikipedia.org/wiki/Lorentz_covariance
  10. Orion1

    The Lagrangian equation...

    Affirmative, revision complete. [math]\;[/math] Einstein's field equations: [math]G_{\mu \nu} = R_{\mu \nu} - \frac{1}{2} R g_{\mu \nu} = \frac{8 \pi G}{c^{4}} T_{\mu \nu}[/math] [math]\;[/math] Einstein's field equations in natural units: [math]G_{\mu \nu} = R_{\mu \nu} - \frac{1}{2} R g_{\mu \nu} = 8 \pi T_{\mu \nu}[/math] [math]\;[/math] Einstein's field equations Ricci tensor in natural units: [math]\boxed{ R_{\mu \nu} = 8 \pi T_{\mu \nu} + \frac{1}{2} R g_{\mu \nu}}[/math] [math]\;[/math] Lagrangian equation: [math]\mathcal{L} = \underbrace{ \mathbb{R} }_{GR} - \overbrace{\underbrace{\frac{1}{4} F_{\mu \nu} F^{\mu \nu}}_{Yang-Mills}}^{Maxwell} + \underbrace{i \overline{\psi} \gamma^\mu D_\mu \psi}_{Dirac} + \underbrace{|D_\mu h|^2-V\left(|h| \right)}_{Higgs} + \underbrace{h \overline{\psi} \psi}_{Yukawa} = 0[/math] [math]\;[/math] General relativity Lagrangian equation: [math]\boxed{\mathcal{L} = \underbrace{8 \pi T_{\mu \nu} + \frac{1}{2} R g_{\mu \nu}}_{GR} - \overbrace{\underbrace{\frac{1}{4} F_{\mu \nu} F^{\mu \nu}}_{Yang-Mills}}^{Maxwell} + \underbrace{i \overline{\psi} \gamma^\mu D_\mu \psi}_{Dirac} + \underbrace{|D_\mu h|^2-V\left(|h| \right)}_{Higgs} + \underbrace{h \overline{\psi} \psi}_{Yukawa} = 0}[/math] [math]\;[/math] A massless gravitational wave is still massless on a Planck scale, and the result is still a tensor field. [math]\;[/math] Tensor field: (ref. 1,pg. 21, eq. 1.68) [math]T^{' \mu \nu} \left(x' \right) = \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} T^{\alpha \beta}\left(x \right)[/math] [math]\;[/math] The general relativity Ricci tensor is a tensor field: [math]\boxed{R_{\mu \nu} = T^{' \mu \nu} \left(x' \right)}[/math] [math]\;[/math] Lagrangian equation for a massless Planck graviton: [math]\boxed{\mathcal{L} = \underbrace{ \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} T^{\alpha \beta}\left(x \right) }_{QG} - \overbrace{\underbrace{\frac{1}{4} F_{\mu \nu} F^{\mu \nu}}_{Yang-Mills}}^{Maxwell} + \underbrace{i \overline{\psi} \gamma^\mu D_\mu \psi}_{Dirac} + \underbrace{|D_\mu h|^2-V\left(|h| \right)}_{Higgs} + \underbrace{h \overline{\psi} \psi}_{Yukawa} = 0}[/math] [math]\;[/math] General relativity and Planck quantum gravity identity: [math]\boxed{8 \pi T_{\mu \nu} + \frac{1}{2} R g_{\mu \nu} = \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} T^{\alpha \beta} \left(x \right)}[/math] [math]\;[/math] General relativity weak field limit spacetime metric: [math]g_{\mu \nu} = \eta_{\mu \nu} + h_{\mu \nu}[/math] [math]\;[/math] General relativity weak field limit spacetime metric and Planck quantum gravity identity 1: [math]\boxed{8 \pi T_{\mu \nu} + \frac{1}{2} R \left(\eta_{\mu \nu} + h_{\mu \nu} \right) = \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} T^{\alpha \beta} \left(x \right)}[/math] [math]\;[/math] General relativity weak field limit spacetime metric and Planck quantum gravity identity 2: [math]\boxed{8 \pi T_{\mu \nu} = \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} T^{\alpha \beta} \left(x \right) - \frac{1}{2} R \left(\eta_{\mu \nu} + h_{\mu \nu} \right)}[/math] [math]\;[/math] Any discussions and/or peer reviews about this specific topic thread? [math]\;[/math] Reference: Lorentz Group and Lorentz Invariance: (ref. 1) https://gdenittis.files.wordpress.com/2016/04/ayudantiavi.pdf
  11. Orion1

    The Lagrangian equation...

    Affirmative, that is correct. [math]\;[/math] Einstein's field equations: [math]G_{\mu \nu} = R_{\mu \nu} - \frac{1}{2} R g_{\mu \nu} = \frac{8 \pi G}{c^{4}} T_{\mu \nu}[/math] [math]\;[/math] Einstein's field equations in natural units: [math]G_{\mu \nu} = R_{\mu \nu} - \frac{1}{2} R g_{\mu \nu} = 8 \pi T_{\mu \nu}[/math] [math]\;[/math] Einstein's field equations Ricci tensor in natural units: [math]\boxed{ R_{\mu \nu} = 8 \pi T_{\mu \nu} + \frac{1}{2} R g_{\mu \nu}}[/math] [math]\;[/math] Lagrangian equation: [math]\mathcal{L} = \underbrace{ \mathbb{R} }_{GR} - \overbrace{\underbrace{\frac{1}{4} F_{\mu \nu} F^{\mu \nu}}_{Yang-Mills}}^{Maxwell} + \underbrace{i \overline{\psi} \gamma^\mu D_\mu \psi}_{Dirac} + \underbrace{|D_\mu h|^2-V\left(|h| \right)}_{Higgs} + \underbrace{h \overline{\psi} \psi}_{Yukawa} = 0[/math] [math]\;[/math] General relativity Lagrangian equation: [math]\boxed{\mathcal{L} = \underbrace{8 \pi T_{\mu \nu} + \frac{1}{2} R g_{\mu \nu}}_{GR} - \overbrace{\underbrace{\frac{1}{4} F_{\mu \nu} F^{\mu \nu}}_{Yang-Mills}}^{Maxwell} + \underbrace{i \overline{\psi} \gamma^\mu D_\mu \psi}_{Dirac} + \underbrace{|D_\mu h|^2-V\left(|h| \right)}_{Higgs} + \underbrace{h \overline{\psi} \psi}_{Yukawa} = 0}[/math] [math]\;[/math] A massless gravitational wave is still massless on a Planck scale, and the result is still a tensor field. [math]\;[/math] Tensor field: (ref. 1, pg. 21, eq. 1.68) [math]T^{' \mu \nu} \left(x' \right) = \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} T^{\alpha \beta}\left(x \right)[/math] [math]\;[/math] The general relativity Ricci tensor is a tensor field: [math]\boxed{R_{\mu \nu} = T^{' \mu \nu} \left(x' \right)}[/math] [math]\;[/math] Lagrangian equation for a massless Planck graviton: [math]\boxed{\mathcal{L} = \underbrace{ \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} T^{\alpha \beta}\left(x \right) }_{QG} - \overbrace{\underbrace{\frac{1}{4} F_{\mu \nu} F^{\mu \nu}}_{Yang-Mills}}^{Maxwell} + \underbrace{i \overline{\psi} \gamma^\mu D_\mu \psi}_{Dirac} + \underbrace{|D_\mu h|^2-V\left(|h| \right)}_{Higgs} + \underbrace{h \overline{\psi} \psi}_{Yukawa} = 0}[/math] [math]\;[/math] General relativity and Planck quantum gravity identity: [math]\boxed{8 \pi T_{\mu \nu} + \frac{1}{2} R g_{\mu \nu} = \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} T^{\alpha \beta} \left(x \right)}[/math] [math]\;[/math] General relativity spacetime metric: [math]g_{\mu \nu} = \eta_{\mu \nu} + h_{\mu \nu}[/math] [math]\;[/math] General relativity spacetime metric and Planck quantum gravity identity: [math]\boxed{8 \pi T_{\mu \nu} + \frac{1}{2} R \left(\eta_{\mu \nu} + h_{\mu \nu} \right) = \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} T^{\alpha \beta} \left(x \right)}[/math] [math]\;[/math] Any discussions and/or peer reviews about this specific topic thread? [math]\;[/math] Reference: Lorentz Group and Lorentz Invariance: (ref. 1) https://gdenittis.files.wordpress.com/2016/04/ayudantiavi.pdf
  12. Orion1

    The Lagrangian equation...

    [math]\;[/math] Affirmative, according to Wikipedia, The action S is given by: [math]S = -mc \int ds = \int L dt[/math] [math]\;[/math] Where L is the relativistic Lagrangian for a free particle: [math]L = -mc^{2} \sqrt{1 - \frac {v^{2}}{c^{2}}}[/math] [math]\;[/math] And my solution for the proper time relativistic Lagrangian for a free particle: [math]\boxed{\mathcal{L} = - \frac{m_{0} c^{2}}{\gamma\left(\dot{\mathbf{r}} \right)} = -m_{0} c^2 \sqrt{1 - \frac{\dot{\mathbf{r}}^2 \left(t \right)}{c^2}}}[/math] [math]\;[/math] [math]\;[/math] A free particle that encounters a gravity field potential will always form a closed path in x,y,z, and time dilation t, and invoke Keplers laws: [math]L = - \frac{m_0 c^2}{\gamma\left( \dot{\mathbf{r}} \right)} - V\left(\mathbf{r}, \dot{\mathbf{r}}, t \right)[/math] [math]\;[/math] [math]\mathbf{v} = \dot{\mathbf{r}} = \frac{d\mathbf{r}}{dt} = \left(\frac{dx}{dt} , \frac{dy}{dt} , \frac{dz}{dt} \right)[/math] [math]\;[/math] Except in the case for a hyperbolic trajectory with escape velocity, where the path integral is inflection curved at the point source for the gravitational field potential. [math]\;[/math] Because, It is implied that the Ricci tensor is still the classical theory of general relativity in this form. Affirmative, I think that you have answered your own question. [math]\;[/math] Einstein's field equations: [math]G_{\mu \nu} = R_{\mu \nu} - \frac{R g_{\mu \nu}}{2} = \frac{8 \pi G}{c^{4}} T_{\mu \nu}[/math] [math]\;[/math] Einstein's field equations in natural units: [math]G_{\mu \nu} = R_{\mu \nu} - \frac{R g_{\mu \nu}}{2} = 8 \pi T_{\mu \nu}[/math] [math]\;[/math] Einstein's field equations Ricci tensor in natural units: [math]\boxed{ R_{\mu \nu} = 8 \pi T_{\mu \nu} + \frac{R g_{\mu \nu}}{2} }[/math] [math]\;[/math] Lagrangian equation: [math]\mathcal{L} = \underbrace{ \mathbb{R} }_{GR} - \overbrace{\underbrace{\frac{1}{4} F_{\mu \nu} F^{\mu \nu}}_{Yang-Mills}}^{Maxwell} + \underbrace{i \overline{\psi} \gamma^\mu D_\mu \psi}_{Dirac} + \underbrace{|D_\mu h|^2-V\left(|h| \right)}_{Higgs} + \underbrace{h \overline{\psi} \psi}_{Yukawa} = 0[/math] [math]\;[/math] General relativity Lagrangian equation: [math]\boxed{\mathcal{L} = \underbrace{8 \pi T_{\mu \nu} + \frac{R g_{\mu \nu}}{2}}_{GR} - \overbrace{\underbrace{\frac{1}{4} F_{\mu \nu} F^{\mu \nu}}_{Yang-Mills}}^{Maxwell} + \underbrace{i \overline{\psi} \gamma^\mu D_\mu \psi}_{Dirac} + \underbrace{|D_\mu h|^2-V\left(|h| \right)}_{Higgs} + \underbrace{h \overline{\psi} \psi}_{Yukawa} = 0}[/math] [math]\;[/math] Conventional gravitational waves that are quantized below the Planck radius with a total Planck energy would be indistinguishable from what scientists refer to as gravitons. Absent a total Planck energy available to generate them, scientists will never observe them to add them to the standard model. [math]\;[/math] A massless gravitational wave is still massless on a Planck scale, and the result is still a tensor field. [math]\;[/math] Tensor field: (ref. 1,pg. 21, eq. 1.68) [math]T^{' \mu \nu} \left(x' \right) = \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} T^{\alpha \beta}\left(x \right)[/math] [math]\;[/math] Lagrangian equation for a massless Planck graviton: [math]\boxed{\mathcal{L} = \underbrace{ \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} T^{\alpha \beta}\left(x \right) }_{QG} - \overbrace{\underbrace{\frac{1}{4} F_{\mu \nu} F^{\mu \nu}}_{Yang-Mills}}^{Maxwell} + \underbrace{i \overline{\psi} \gamma^\mu D_\mu \psi}_{Dirac} + \underbrace{|D_\mu h|^2-V\left(|h| \right)}_{Higgs} + \underbrace{h \overline{\psi} \psi}_{Yukawa} = 0}[/math] [math]\;[/math] General relativity and Planck quantum gravity identity: [math]\boxed{8 \pi T_{\mu \nu} + \frac{R g_{\mu \nu}}{2} = \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} T^{\alpha \beta}\left(x \right)}[/math] [math]\;[/math] Reference: Lorentz Group and Lorentz Invariance: (ref. 1) https://gdenittis.files.wordpress.com/2016/04/ayudantiavi.pdf
  13. Orion1

    The Lagrangian equation...

    Relativistic Lagrangian Lorentz factor: (ref. 1, ref. 2, ref. 6) [math]dt = \gamma\left(\dot{\mathbf{r}} \right) d\tau[/math] [math]\;[/math] [math]\gamma\left(\dot{\mathbf{r}} \right) = \frac{dt}{d\tau} = \frac{1}{\sqrt{1 - \frac{\dot{\mathbf{r}}^2}{c^2}}}[/math] [math]\boxed{\gamma\left(\dot{\mathbf{r}} \right) = \frac{1}{\sqrt{1 - \frac{\dot{\mathbf{r}}^2}{c^2}}}}[/math] [math]\;[/math] [math]\dot{\mathbf{r}} = \frac{d\mathbf{r}}{dt}[/math] [math]\;[/math] Relativistic Lagrangian neutral particle total energy integration via substitution: (ref. 2) [math]E_{t} = m_0 c^2 \frac{dt}{d \tau} = \gamma\left(\dot{\mathbf{r}} \right) m_0 c^2 = \frac{m_0 c^2}{\sqrt {1 - \frac{\dot{\mathbf{r}}^2 \left(t \right)}{c^2}}} = m_0 c^2 + {1 \over 2} m_0 \dot{\mathbf{r}}^2 \left(t \right) + {3 \over 8} m_0 \frac{\dot{\mathbf{r}}^4 \left(t \right)}{c^2} + \cdots[/math] [math]\;[/math] Relativistic Lagrangian neutral particle total energy: (ref. 2) [math]\boxed{E_{t} = \frac{m_{0} c^2}{\sqrt{1 - \frac{\dot{\mathbf{r}}^2 \left(t \right)}{c^2}}}}[/math] [math]\;[/math] Classical neutral particle kinetic energy: [math]E_{k} = \frac{m_{0} v^{2}}{2} = \frac{m_{0}}{2} \frac{ds^{2}}{dt^{2}}[/math] [math]\boxed{E_{k} = \frac{m_{0}}{2} \frac{ds^{2}}{dt^{2}}}[/math] [math]\;[/math] Classical Lagrangian neutral particle kinetic energy: (ref. 4) [math]E_{k} = \frac{m_{0} g_{bc}}{2} \frac{\mathrm{d}\xi^{b}}{\mathrm{d}t} \frac{\mathrm{d}\xi^{c}}{\mathrm{d}t}[/math] [math]\;[/math] Relativistic Lagrangian neutral particle kinetic energy: [math]E_{k} = m_{0} c^{2} \left(\gamma\left(\dot{\mathbf{r}} \right) - 1 \right)[/math] [math]\;[/math] Newtons second law for neutral particle integration via substitution: (ref. 3) [math]\mathbf{F} = \frac{d \mathbf{p}}{dt} = \frac{d(m_{0} \mathbf{v})}{\mathrm{d}t} = m_{0} \frac{d\mathbf{v}}{\mathrm{d}t} = m_{0} \frac{ds}{dt^2}[/math] [math]\;[/math] Newtons second law for neutral particle: [math]\boxed{\mathbf{F} = m_{0} \frac{ds}{dt^2}}[/math] [math]\;[/math] Relativistic Newtons second law for neutral particle: [math]\boxed{\mathbf{F} = \gamma m_{0} \frac{ds}{dt^2}}[/math] [math]\;[/math] General relativity geodesic equation: (ref. 4) [math]\frac{d^{2}x^{\mu}}{dt^{2}} + \Gamma^{\mu}{}_{\alpha \beta} \frac{dx^{\alpha}}{dt} \frac{dx^{\beta}}{dt} = 0[/math] [math]\;[/math] Newtons second law in Lagrangian form for neutral particle: (ref. 5) [math]F^{a} = m_{0} \left(\frac{d^{2} \xi^{a}}{dt^{2}}+ \Gamma^{a}{}_{bc} \frac{d\xi^{b}}{dt} \frac{d\xi^{c}}{dt} \right)[/math] [math]\;[/math] Relativistic Newtons second law in Lagrangian form for neutral particle: [math]\boxed{F^{a} = \gamma\left(\dot{\mathbf{r}} \right) m_{0} \left( \frac{d^{2} \xi^{a}}{dt^{2}} + \Gamma^{a}{}_{bc} \frac{d\xi^{b}}{dt} \frac{d\xi^{c}}{dt} \right)}[/math] [math]\;[/math] Relativistic Lagrangian for a neutral particle: [math]\mathcal{L} = E_{k} - E_{p}[/math] [math]\;[/math] [math]\boxed{\mathcal{L} = m_{0} c^{2} \left(\gamma\left(\dot{\mathbf{r}} \right) - 1 \right) - E_{p}}[/math] [math]\;[/math] Relativistic Lagrangian integration via substitution: [math]\mathcal{L} = \sum_{1}^{n} E_{k}\left(n \right) - \sum_{1}^{n} E_{p}\left(n \right) = \sum_{1}^{n} \mathcal{L}\left(n \right) = 0[/math] [math]\;[/math] Relativistic Lagrangian: [math]\boxed{\mathcal{L} = \sum_{1}^{n} \mathcal{L}\left(n \right) = 0}[/math] [math]\;[/math] The Lagrangian equation integration via substitution: [math]\mathcal{L} = \sum_{1}^{n} \mathcal{L}\left(n \right) = \underbrace{\mathbb{R}}_{GR} - \overbrace{\underbrace{\frac{1}{4} F_{\mu \nu} F^{\mu \nu}}_{Yang-Mills}}^{Maxwell} + \underbrace{i \overline{\psi} \gamma^\mu D_\mu \psi}_{Dirac} + \underbrace{|D_\mu h|^2-V\left(|h| \right)}_{Higgs} + \underbrace{h \overline{\psi} \psi}_{Yukawa} = 0 \; \; \; \; \; \; n = 5[/math] The Lagrangian equation: [math]\boxed{\mathcal{L} = \underbrace{\mathbb{R}}_{GR} - \overbrace{\underbrace{\frac{1}{4} F_{\mu \nu} F^{\mu \nu}}_{Yang-Mills}}^{Maxwell} + \underbrace{i \overline{\psi} \gamma^\mu D_\mu \psi}_{Dirac} + \underbrace{|D_\mu h|^2-V\left(|h| \right)}_{Higgs} + \underbrace{h \overline{\psi} \psi}_{Yukawa} = 0} \; \; \; \; \; \; n = 5[/math] [math]\;[/math] [math]\;[/math] I think that this revision has compensated for the 4 momentum and 4 velocity under general relativity with respect to proper time [math]\tau[/math], through the Lorentz factor. The 4 momentum and 4 velocity is intrinsic to general relativity as required by four-dimensional space-time. [math]\;[/math] I note two general relativity geodesic equation forms, a spacial and a temporal form. [math]\;[/math] General relativity spacial geodesic equation: (ref. 4) [math]\frac{d^{2}x^{\mu}}{ds^{2}} + \Gamma^{\mu}{}_{\alpha \beta} \frac{dx^{\alpha}}{ds} \frac{dx^{\beta}}{ds} = 0[/math] [math]\;[/math] General relativity temporal geodesic equation: (ref. 4) [math]\frac{d^{2}x^{\mu}}{dt^{2}} + \Gamma^{\mu}{}_{\alpha \beta} \frac{dx^{\alpha}}{dt} \frac{dx^{\beta}}{dt} = 0[/math] [math]\;[/math] Do you agree with this mathematical symbolic formalism derivation revision for the formal Lagrangian equation? [math]\;[/math] Any discussions and/or peer reviews about this specific topic thread? [math]\;[/math] Reference: Wikipedia - The Lorentz factor: (ref. 1) https://en.wikipedia.org/wiki/Lorentz_factor Wikipedia - Relativistic Lagrangian mechanics: (ref. 2) https://en.wikipedia.org/wiki/Relativistic_Lagrangian_mechanics#Coordinate_formulation Wikipedia - Newtons second law: (ref. 3) https://en.wikipedia.org/wiki/Newton's_laws_of_motion#Newton's_second_law Wikipedia - Geodesics in general relativity: (ref. 4) https://en.wikipedia.org/wiki/Geodesics_in_general_relativity Wikipedia - Newtons second law Lagrangian form: (ref. 5) https://en.wikipedia.org/wiki/Lagrangian_mechanics#From_Newtonian_to_Lagrangian_mechanics Wikipedia - Four-velocity: (ref. 6) https://en.wikipedia.org/wiki/Four-velocity
  14. Orion1

    The Lagrangian equation...

    [math]\;[/math] Please consider Newtons second law and the relativistic Newtons second law for a moment. [math]\;[/math] [math]\gamma[/math] - Lorentz factor [math]\;[/math] Newtons second law: (ref. 1) [math]\mathbf{F} = \frac{d \mathbf{p}}{dt} = \frac{d\left(m \mathbf{v} \right)}{\mathrm{d}t} = m {\frac{d\mathbf{v}}{\mathrm{d}t}} = m \frac{ds}{dt^2}[/math] [math]\boxed{\mathbf{F} = m \frac{ds}{dt^2}}[/math] [math]\;[/math] Relativistic Newtons second law: [math]\boxed{\mathbf{F} = \gamma m \frac{ds}{dt^2}}[/math] [math]\;[/math] Newtons second law in Lagrangian form: (ref. 2) [math]F^{a} = m \left( \frac{d^{2} \xi^{a}}{dt^{2}}+ \Gamma^{a}{}_{bc} \frac{d\xi^{b}}{dt} \frac{d\xi^{c}}{dt} \right)[/math] [math]\;[/math] Relativistic Newtons second law in Lagrangian form: [math]\boxed{F^{a} = \gamma m \left( \frac{d^{2} \xi^{a}}{dt^{2}}+ \Gamma^{a}{}_{bc} \frac{d\xi^{b}}{dt} \frac{d\xi^{c}}{dt} \right)}[/math] [math]\;[/math] Thus including all classical nonrelativistic Lagrangian mechanics into relativistic Lagrangian mechanics? [math]\;[/math] Any discussions and/or peer reviews about this specific topic thread? [math]\;[/math] Reference: Wikipedia - Newtons second law: (ref. 1) https://en.wikipedia.org/wiki/Newton's_laws_of_motion#Newton's_second_law Wikipedia - Newtons second law in Lagrangian form: (ref. 2) https://en.wikipedia.org/wiki/Lagrangian_mechanics#From_Newtonian_to_Lagrangian_mechanics
  15. Orion1

    Latex test