Jump to content

Markus Hanke

Resident Experts
  • Content Count

    579
  • Joined

  • Last visited

  • Days Won

    10

Markus Hanke last won the day on December 26 2019

Markus Hanke had the most liked content!

Community Reputation

238 Beacon of Hope

About Markus Hanke

  • Rank
    Molecule

Contact Methods

  • Website URL
    http://www.markushanke.net/

Profile Information

  • Location
    Ireland
  • Favorite Area of Science
    Physics

Recent Profile Visitors

4926 profile views
  1. SR is model of Minkowski spacetime, i.e. of the relationships between events in the absence of gravitational sources. It is a special case of General Relativity, for cases where gravitational effects are negligible. The specific form that Maxwell’s equations take is a consequence of relativity, not its cause.
  2. SR is a model of Minkowski spacetime, i.e. an empty vacuum spacetime devoid of gravitational sources, including electromagnetic fields. It is thus not an “offshoot” of EM. One can use Minkowski spacetime as a background for field theories, so long as the gravitational effect of those fields is negligible - this leads you to quantum field theory and the Standard Model. This framework is perfectly well capable of describing particles and forces that do not carry electric charge, and are not of EM origin. This is not a valid line element, because it isn’t an invariant.
  3. ! Moderator Note I think this topic is better suited to the Speculations section of the forum - thread moved. While there are a lot of similarities (but also lots of differences) between gravity and EM in the Newtonian domain, you need to remember that Newtonian gravity is only an approximation in the low velocity, weak field regime. The full model of gravity - General Relativity - is quite unlike Maxwell’s electromagnetism, so you cannot really compare them in this manner.
  4. Quarks have the same status within the Standard Model as all the other fundamental building blocks - whether you detect them with particle-like properties or with wave-like properties depends solely on your experimental setup. This is not an ontological question (the nature of the entity is either one or the other, or both, or neither), but an epistemological one - what can the experimenter know about the system in question? What information about the system is made available through a specific, given setup? So essentially, whether something appears as a wave or a particle is more an expression of the relationship between the quantum system and the observer, than it is a statement of the nature of the entity itself. This is true for all of the particles within the Standard Model.
  5. The reasons are of a mathematical nature. When you formulate the theory, there are two basic requirements that need to be fulfilled - it needs to be internally consistent, and it needs to describe the correct particles (with correct properties etc) which we empirically find the in the real world. It turns out that these requirements are fulfilled only if there are more than 4 spacetime dimensions, otherwise the model doesn’t work.
  6. QFT can be generalised to curved space-time backgrounds, so we do know quite a bit about this. Did you consider the fact that the dynamics of gravity are highly non-linear? Gravitational fluctuations do not superimpose linearly, as (e.g.) EM waves would.
  7. Yes, you could run the maths on it, though potentially this isn’t a straightforward calculation (especially in the case of the Alcubierre metric). My understanding (though I’m no expert on this particular solution) is that there is no horizon, but a narrow region of extreme tidal gravity. The two regions remain causally connected though. Again, I don’t know the answers to this straight off the bat, but of course one could sit down and do the actual maths (definitely not a trivial calculation!). The relationship between clocks here would be well defined, and can be calculated. My intuition is that causality would remain preserved in all cases that are actually physically realisable (and there is a big question mark in that regard, so far as the Alcubierre solution is concerned). Wormholes connect potentially distant regions in spacetime, so in principle they span intervals of both space and time. In principle, yes. “Now” is always a local notion - it would be very difficult, perhaps meaningless, to try and define a notion of simultaneity in a spacetime with a topology that is multiply connected. This is a very complex question, not just because this spacetime is multiply connected, but also because the existence of a wormhole does not necessarily imply causal connections (i.e. information may not be able to propagate through that wormhole, depending on its exact geometry). Interesting question though!
  8. It’s similar to a wormhole in the effect it has - i.e. providing a “shortcut” between widely separated regions -, but the geometry of spacetime is quite different. No exotic matter or any other special constructs are needed to create a stable, traversable Krasnikov tube; just lots of energy in the right configuration.
  9. That’s true, though technically speaking - and I know I’m nitpicking here - they are not a means of FTL travel, since everything happens at subluminal speeds. On a purely practical level, my main issue with wormholes would be not so much their stability, but the fact that - at the time of their creation - there is no way whatsoever to control where/when the other end of the passage will form, not even in principle. This makes them rather useless for practical purposes. Still, if for the sake of argument it could be made to work somehow, the possibilities would be fascinating - The sci-fi author Dan Simmons has explored this concept in his Hyperion Cantos, with his “farcaster” device. A very interesting read, so far as sci-fi goes. I would like to briefly mention another - lesser known - topological construct, which could in principle be created in the real world, given enough energy: the Krasnikov Tube. It’s a permanent, stable distortion of spacetime that can be left behind in the wake of a correctly configured spacecraft moving at close to the speed of light. Any subsequent craft travelling that same route will find its trajectory shortened, much like in a wormhole, but without the need for exotic energy. This is theoretically feasible, and avoids all the issues of warp travel and wormholes, but does require a lot of energy to put into practice, at least for the first journey when the tube is created.
  10. I agree, though I have never studied it in any great detail.
  11. Personally I think there is a great mathematical beauty in String Theory, and a number of important advances in both mathematics and theoretical physics have emerged from the study of this model. However, “it’s beautiful” is not a scientific argument, and no indicator as to its value as a valid model of quantum gravity. One of the main problems I see right now is this - String Theory doesn’t actually produce GR in the classical limit, it produces GR plus a large number of scalar fields. There is no evidence for any of these scalar particles in the real world, nor is there any known way to mathematically remove them from the theory. This is an awkward problem, and I don’t see it being discussed very often in the ST community. Furthermore, we don’t actually know whether or not ST is even capable of reproducing all the particles of the Standard Model (plus their interactions and symmetries) in a self-consistent manner. My take on this is - String Theory certainly warrants further research, but it is at best unclear whether or not it can produce a workable model of quantum gravity. There are a lot of fundamental problems associated with this model, which would need addressing.
  12. I do not see how a hexaquark - or any multi-quark system for that matter - would fail to electromagnetically interact with its surroundings (i.e. absorb/emit light), which is a basic property of DM.
  13. I think it is fair to say that FTL travel is a concept that will always be of interest to us as a species. Nonetheless, there are good reasons to conjecture (based on currently known physics) that FTL travel is not a valid concept, due to various fundamental issues with it. Firstly, I am very sceptical of this, as the Casimir vacuum does not represent a “true” negative energy density in the physical sense; it is not exotic matter. Secondly, even if it does fulfill the requirements of the Alcubierre solution, it still wouldn’t be of practical use, since the Casimir effect cannot easily be scaled up to the size of an entire spaceship.
  14. The other fundamental issue I see is that, even if one was able to generate an Alcubierre bubble somehow, it would be entirely useless for all practical purposes. For starters, there is no practical way to control how this construct propagates - you couldn’t change its direction of propagation after it has been created, or even slow it down and bring it to a halt relative to some external reference point, by any means I can think of (excepting perhaps non-linear interactions with strong background curvature, which isn’t practical). The other awkward problem is that the “walls” of the bubble would constitute a region of extreme curvature, so anything entering or exiting the warp bubble would be ripped to shreds by tidal gravity. Lastly, once created, I don’t see any way of collapsing such an Alcubierre bubble again; effectively, any ship in the interior would end up being trapped forever. One must also wonder what the vacuum in the interior of the bubble, and especially around the walls, would look like from a QFT perspective - Unruh radiation? All in all, it is an interesting concept from a purely academic point of view, but wholly impractical as a means for FTL travel.
  15. As I attempted to explain, GR (which is the block universe model) is a model of gravity, and nothing else. It makes no predictions as to how much mass is in the universe. Also, since you are saying that you are not changing anything about GR, then that means you obtain the same solutions to the same equations, yielding the same dynamics. So you are either changing GR, or you are contradicting existing observational data as to the average energy density of the universe.
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.