Jump to content

Continuum of space

Featured Replies

Lets consider a line of length 1m.

If space is continuous, it means there is an infinity of points in this line.

Now, size of each point=1/infinity=0

 

This implies that our line is of zero size because its constituents are all of zero size.

 

How to resolve this contradiction?

The cardinality of the number of points in the interval is that of the continuum. Summation rule doesn't work in this case. Contrast with the total length of all the rational points (countable). Here the total "length" (measure) is 0.

I am of the opinion that it is the "length of all definable points (countable)". Therefore the "length" once the limit has reached "undefined value" is then zero. That is the nature of zero is undefined value not the absence of value. Thus the continuum.

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.