Senior Members
  • Content Count

  • Joined

  • Last visited

Community Reputation

6 Neutral

About stephaneww

  • Rank
  • Birthday 10/02/1968

Profile Information

  • Location
  • Favorite Area of Science

Recent Profile Visitors

3449 profile views
  1. Thank you for everything, Mordred. If we assume, for example, that [latex]M_b * \Lambda= cst[/latex] then, when [latex]M_b[/latex] decreases [latex] \Lambda[/latex] increases inversely proportional. Could this be a part of the explanation for the fact that it seems that the acceleration of expansion is also accelerated?
  2. merge then edit too late : Can we say that [latex]M_\text{b(t-1)} = M_\text{b(t)}[/latex] from close to close ?
  3. \textif I understand correctly (because I didn't understand everything) for z=0.791, doing [latex]\Omega_b=M_b/M_{total}[/latex] is not a good approximation ? well, I redid the table with the same values but with 100 steps The difference [latex]\Omega_b / \Omega_m[/latex] for z=0 et z=0.124 becomes minor : 0.05% Can we say that [latex] M_b_\text{(t-1)}/ M_b_text{(t)}[/latex] from close to close ?
  4. for z=0.791, I used Ned Wright's calculator to determine radius of observable universe, then I find the volume, then I find total mass with the density of your table. I assume that [latex]M_b[/latex] don't change edit : of course
  5. In abstract [latex]\Omega_b h^2=0.0224[/latex] so : [latex]\Omega_b =0.0224/h^2=0.0224/(67.4/100)^2[/latex]
  6. with : (base Planck 2015) and : H : 67.4 Omega L : 6851 Step : 20 I have : [latex]{\scriptsize\begin{array}{|r|r|r|r|r|r|r|r|r|r|r|r|r|r|r|r|} \hline z&Sc.fctr (a)&S&T (Gy)&D_{hor}(Gly)&H(t)&rho, kg/m^3&Temp(K)&OmegaM&OmegaL&OmegaR \\ \hline 1090.000&0.000917&1091.000&0.000370&0.0567&1.5678e+6&5.1243e-18&2.9784e+3&7.5549e-1&1.2661e-9&2.4451e-1\\ \hline 608.078&0.001642&609.078&0.000972&0.1009&6.1767e+5&7.9532e-19&1.6628e+3&8.4697e-1&8.1576e-9&1.5303e-1\\ \hline 339.033&0.002941&340.033&0.002479&0.1787&2.4879e+5&1.2903e-19&9.2829e+2&9.0838e-1&5.0282e-8&9.1628e-2\\ \hline 188.832&0.005268&189.832&0.006188&0.3153&1.0166e+5&2.1542e-20&5.1824e+2&9.4669e-1&3.0117e-7&5.3311e-2\\ \hline 104.978&0.009436&105.978&0.015217&0.5530&4.1901e+4&3.6600e-21&2.8932e+2&9.6952e-1&1.7726e-6&3.0480e-2\\ \hline 58.165&0.016902&59.165&0.037051&0.9621&1.7360e+4&6.2827e-22&1.6152e+2&9.8275e-1&1.0327e-5&1.7248e-2\\ \hline 32.030&0.030275&33.030&0.089654&1.6549&7.2141e+3&1.0849e-22&9.0173e+1&9.9024e-1&5.9802e-5&9.7027e-3\\ \hline 17.440&0.054230&18.440&0.216104&2.7998&3.0032e+3&1.8801e-23&5.0341e+1&9.9422e-1&3.4507e-4&5.4386e-3\\ \hline 9.295&0.097139&10.295&0.519591&4.6201&1.2522e+3&3.2689e-24&2.8104e+1&9.9498e-1&1.9847e-3&3.0385e-3\\ \hline 4.747&0.173998&5.747&1.245974&7.3303&5.2445e+2&5.7338e-25&1.5690e+1&9.8701e-1&1.1315e-2&1.6828e-3\\ \hline 2.209&0.311671&3.209&2.963870&10.8922&2.2448e+2&1.0505e-25&8.7592e+0&9.3735e-1&6.1759e-2&8.9217e-4\\ \hline 0.791&0.558275&1.791&6.796199&14.4931&1.0647e+2&2.3631e-26&4.8901e+0&7.2506e-1&2.7455e-1&3.8527e-4\\ \hline 0.000&1.000000&1.000&13.795986&16.6666&6.7400e+1&9.4701e-27&2.7300e+0&3.1480e-1&6.8509e-1&9.3386e-5\\ \hline -0.442&1.791233&0.558&23.084440&17.3355&5.7975e+1&7.0067e-27&1.5241e+0&7.4032e-2&9.2595e-1&1.2261e-5\\ \hline -0.662&2.961475&0.338&31.723059&17.4497&5.6279e+1&6.6028e-27&9.2184e-1&1.7384e-2&9.8260e-1&1.7413e-6\\ \hline -0.796&4.896255&0.204&40.497135&17.4966&5.5897e+1&6.5133e-27&5.5757e-1&3.8994e-3&9.9610e-1&2.3625e-7\\ \hline -0.876&8.095059&0.124&49.302428&17.5231&5.5812e+1&6.4936e-27&3.3724e-1&8.6547e-4&9.9913e-1&3.1715e-8\\ \hline -0.925&13.383695&0.075&58.114641&17.5290&5.5793e+1&6.4893e-27&2.0398e-1&1.9163e-4&9.9979e-1&4.2475e-9\\ \hline -0.955&22.127483&0.045&66.928214&17.5304&5.5789e+1&6.4882e-27&1.2338e-1&4.2410e-5&9.9995e-1&5.6857e-10\\ \hline -0.973&36.583733&0.027&75.742301&17.5306&5.5788e+1&6.4880e-27&7.4623e-2&9.3846e-6&9.9998e-1&7.6097e-11\\ \hline -0.983&60.484488&0.017&84.556288&17.5308&5.5788e+1&6.4879e-27&4.5136e-2&2.0766e-6&1.0000e+0&1.0185e-11\\ \hline -0.990&100.000000&0.010&93.370467&17.5307&5.5788e+1&6.4880e-27&2.7300e-2&4.5950e-7&9.9999e-1&1.3631e-12\\ \hline \end{array}}[/latex] according to the abstract Planck 2018, [latex]\Omega_b = 0.0492[/latex] and I find [latex]M_b = 1.457*10^{53}kg[/latex] and [latex]\Omega_b / \Omega_m = 0.1563[/latex] for the present time. For z=0.791 I have a problem determining [latex]\Omega_b[/latex] or it's: [latex]M_b/M_{total} = 1.457*10^{53}kg/7.559*10^{53}kg=0.1927=\Omega_b[/latex] but then [latex]\Omega_b / \Omega_m = 0.2658[/latex]. why [latex]\Omega_b / \Omega_m[/latex] are différents for each time
  7. Hello Mordred. I finally understood the use of the calculator (Planck 2015) and the equality of H with density parameters. But I have not been able to find satisfactory approximations to apply them to the data in the abstract Planck 2018. I have to wait for the update to go further. I will move on to the FLRW and GR equations in the meantime. PS: I found the button output in Latex and would know how to transform Tex into Latex edit : I have find a good approximation but I have a big problem
  8. oh good. it's very good link when I look with options. I use it now before the 2018 planck version +1 thank you
  9. For the moment, I'm troubled with the equations of state Thanks for these encouragements... but I think I'm doing a little better in cosmology than in FRW: _) If you have an answer for its current value (planck 2018) I take
  10. oh thank you. edit ok forgot this question : [latex] \Omega_m[/latex] is for baryonic matter or all the matter (dark+ordinary)? I have a new one : where can I find [latex] \Omega_r[/latex] ?
  11. I also need need the ratio H/H0 to find OmegaLambda and OmegaM
  12. It's okay with: T H0 : 14,497 T H infinite : 17.51 Omega tot : 0.9989 there's just one tiny little mistake on OmegaM
  13. I'm stranded: how to get the values with Planck 2018 please? for : edit I understood : Hubble time is different from age of unoverse
  14. Perfect. thank you again. After reading the table of contents and the passage concerning the cosmological parameters, I did not find it. Or else I don't understand. I have a formula that will go into the speculation section with [latex]\Omega_b[/latex] and [latex]\Omega_\Lambda[/latex] that could be compatible with this: I'll calculate to see if the numerical values confirm Thank you again
  15. stephaneww

    Dark Energy increasing with Time:

    more here and here :