Jump to content

Trigonometric Identities

Featured Replies

What is an additive identities? (e.g. sin(a+b))? Then what is a double angle identities?

 

e.g. sin(2x)

 

sin(x + x) would be the right answer? But how does double angle identity applies to it?

  • Author

What a beautiful day! I just learnt about Additive & Subractive Angle Identities today. Let me recollect what I have learnt:

 

THIS IS THE FIRST SUBRACTIVE IDENTITY I HAVE LEARNT:

[math]

(cos(\alpha+\beta)-1)^2 + (sin(\alpha-\beta)-0)^2 = (cos\alpha-cos\beta)^2 + (sin\alpha-sin\beta)^2

[/math]

LEFT SIDE EXPAND:

[math]

cos^2(\alpha-\beta) - 2cos(\alpha - \beta) + 1 + sin^2(\alpha-\beta)

[/math]

THUS:

[math]

2 - 2cos(\alpha-\beta)

[/math]

RIGHT SIDE EXPAND:

[math]

cos^2{\alpha} - 2cos{\alpha}cos{\beta} + cos^2{\beta} + sin^2{\alpha} - 2sin{\alpha}sin{\beta} + sin^2{\beta}

[/math]

THUS:

[math]

2 - 2cos{\alpha}cos{\beta} - 2sin{\alpha}sin{\beta}

[/math]

COMPLETION OF BOTH SIDES:

[math]

2 - 2cos(\alpha-\beta) = 2 - 2cos{\alpha}cos{\beta} - 2sin{\alpha}sin{\beta}

[/math]

SIMPLFY:

[math]

cos(\alpha-\beta) = cos{\alpha}cos{\beta} + sin{\alpha}sin{\beta}

[/math]

 

There are 5 more additive/subractive identites but I'm not going to type all the processes right now. It took me awhile to type all the equations above.

:P

  • Author

I found out that [math]cos(2x) = 1 - 2sin^2x[/math]. How is this possible?

 

:confused:

  • Author

One more question: How is this possible: [math]\cos(x+x) = \cos^2 x - \sin^2 x[/math]?

[math]\cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b \Rightarrow \cos \left( {a + a} \right) = \cos \left( {2a} \right) = \cos ^2 a - \sin ^2 a[/math]

  • Author
Because [imath]

\cos(2x) = \cos(x+x) = \cos^2 x - \sin^2 x = (1-\sin^2 x) - \sin^2 x = 1 - 2\sin^2 x

[/imath]

 

I found out a different method to do this:

[math]

cos(a+a) = cos^2a - sin^2a = cos^2a - (1=cos^2a) = 2cos^2a-1

[/math]

 

Is the answer same as [math]1-2sin^2a[/math]?

  • Author

I have provided myself with more challenging question:

 

[math]\sin(3\alpha)[/math]

 

The answer I got was [math]2\sin{\alpha}\cos^2\cos{\alpha} + \cos^2{\alpha}\sin{\alpha} - \sin^3{\alpha}[/math]

 

Is this correct?

I have provided myself with more challenging question:

 

[math]\sin(3\alpha)[/math]

 

The answer I got was [math]2\sin{\alpha}\cos^2\cos{\alpha} + \cos^2{\alpha}\sin{\alpha} - \sin^3{\alpha}[/math]

 

Is this correct?

 

Given

 

[math]\sin(\alpha+\beta)=\sin(\alpha) \cdot \cos(\beta)+\sin(\beta) \cdot \cos(\alpha)[/math]

 

and

 

[math]\cos(\alpha+\beta)=\cos(\alpha) \cdot \cos(\beta) - \sin(\alpha) \cdot \sin(\beta)[/math]

 

and

 

[math]\sin^2(\alpha)+\cos^2(\alpha)=1[/math]

 

you can figure it out...

 

[math]\sin(3\alpha)=\sin(2\alpha+\alpha)[/math]

 

[math]\sin(2\alpha) \cdot \cos(\alpha)+\sin(\alpha) \cdot \cos(2\alpha)[/math]

 

[math]\sin(\alpha+\alpha) \cdot \cos(\alpha)+\sin(\alpha) \cdot \cos(\alpha+\alpha)[/math]

 

[math][\sin(\alpha) \cdot \cos(\alpha) + \sin(\alpha) \cdot \cos(\alpha)] \cdot \cos(\alpha)+\sin(\alpha) \cdot [\cos(\alpha) \cdot \cos(\alpha) - \sin(\alpha) \cdot sin(\alpha)][/math]

 

[math]2[\sin(\alpha) \cdot \cos(\alpha)] \cdot \cos(\alpha)+\sin(\alpha) \cdot [\cos^2(\alpha)- \sin^2(\alpha)][/math]

 

and if...

 

[math]\sin^2(\alpha)+\cos^2(\alpha)=1[/math]

 

Then

 

[math]\cos^2(\alpha)=1-\sin^2(\alpha)[/math]

 

[math]2[\sin(\alpha) \cdot \cos^2(\alpha)]+\sin(\alpha) \cdot [1-\sin^2(\alpha)- \sin^2(\alpha)][/math]

 

[math]2[\sin(\alpha) \cdot \cos^2(\alpha)]+\sin(\alpha) \cdot [1-2\sin^2(\alpha)][/math]

 

[math]2\sin(\alpha)[\cos^2(\alpha)+1-2\sin^2(\alpha)][/math]

 

[math]2\sin(\alpha)[1-\sin^2(\alpha)+1-2\sin^2(\alpha)][/math]

 

[math]2\sin(\alpha)[2-3\sin^2(\alpha)][/math]

 

[math]4\sin(\alpha)-6\sin^3(\alpha)[/math]

 

however... from this step...

 

[math]2[\sin(\alpha) \cdot \cos(\alpha)] \cdot \cos(\alpha)+\sin(\alpha) \cdot [\cos^2(\alpha)- \sin^2(\alpha)][/math]

 

[math]2\sin(\alpha)\cos^2(\alpha)+ \cos^2(\alpha)\sin(\alpha) - \sin^3(\alpha)[/math]

 

can be reached (which is slightly different from your answer), but my form is simpler!

 

(last step edited by realizing my mistake...)

  • Author

Sorry BobbyJoeCool I mistyped my answer!! :embarass:

I got the same answer as you did, but I did it in a shorter method than yours. Yours seem like forever to type!

 

THE WAY I DID WAS:

[math]

\sin(3\alpha) = \sin(2\alpha + \alpha)

[/math]

[math]

=\sin2{\alpha}\cos{\alpha} + \cos2{\alpha}\sin{\alpha}

[/math]

[math]

=(2\sin\alpha\cos\alpha)\cos\alpha + (\cos^2\alpha - \sin^2\alpha)\sin\alpha

[/math]

THEREFORE THE ANSWER IS:

[math]

\rightarrow2\sin\alpha\cos^2\alpha + \cos^2\alpha\sin\alpha - \sin^3\alpha

[/math]

You're way isn't shorter... just you don't show all the steps like I did...

 

You got (2sin•cos)cos because

 

[math]\sin(2a)=\sin(a+a)=\sin(a)\cos(a)+\sin(a)\cos(a)=2\sin(a)\cos(a)[/math]

 

and

 

[math]\cos(2a)=\cos(a+a)=\sin(a)\sin(a)-\cos(a)\cos(a)=\sin^2(a)-\cos^2(a)[/math]

 

I mearly showed those steps, so it looks longer, and I still like my final form better! :)

  • Author

Yeah you are right BobbyJoeCool. :P

  • Author

I HAVE A NEW QUESTION!! Give the exact value of each of the following: For example [math]\cos\frac{7\pi}{12}[/math].

 

Using the additive and subractive trigonometric identities to establish the exact value.

 

What I did was:

[math]\cos\frac{7\pi}{12} = 105[/math] degree

 

[math]\cos(\frac{\pi}{4} + \frac{\pi}{3}) = \cos\frac{\pi}{4}\cos\frac{\pi}{3} - \sin\frac{\pi}{4}\sin\frac{\pi}{3}

[/math]

[math]

(\frac{\sqrt2}{2})(\frac{1}{2}) - (\frac{\sqrt2}{2})(\frac{\sqrt3}{2})

[/math]

[math]

\frac{\sqrt2}{4} - \frac{\sqrt6}{4}

[/math]

[math]

\rightarrow\frac{\sqrt2 - \sqrt6}{4}

[/math]

 

So in the similar method above I don't know how to do this: [math]\sec\frac{-\pi}{12}[/math]??? Can anyone help me?

Well, [math]\sec \frac{-\pi}{12} = \frac{1}{\cos \frac{-\pi}{12}}[/math]. Now since [math]\cos \frac{-\pi}{12} = \cos \frac{\pi}{12}[/math] and you've already evaluated [math]\cos\frac{\pi}{12}[/math] you can work out the answer :)

  • Author

I completely disagree with you dave. [math]\cos \frac{-\pi}{12}[/math] does not equal to [math] \cos \frac{\pi}{12}[/math].

 

To get [math]\sec\frac{-\pi}{12}[/math], you should have 45 degrees subract 60 degrees which would equal to minus 15 degrees. (-15 or [math]\frac{-\pi}{12}[/math]).

 

To change [math]\sec[/math], you have to get [math]\frac{1}{\cos}[/math]. Therefore,

 

[math]\frac{1}{\cos}(\frac{\pi}{4} - \frac{\pi}{3})[/math]

 

Expanding the [math]\cos[/math] subractive trig identity:

[math]

\frac{1}{\cos}(\cos\frac{\pi}{4}\cos\frac{\pi}{3} + \sin\frac{\pi}{4}\sin\frac{\pi}{3})

[/math]

 

[math]\rightarrow\frac{1}{(\frac{\sqrt2}{2})(\frac{1}{2}) + (\frac{\sqrt2}{2})(\frac{\sqrt3}{2})}

[/math]

 

[math]=\frac{1}{(\frac{\sqrt2}{4}) + (\frac{\sqrt6}{4})}[/math]

 

[math]=\frac{1}{(\frac{\sqrt2 + \sqrt6}{4})} = \frac{1}{1} \cdot \frac{4}{\sqrt2 + \sqrt6} = \frac{4}{\sqrt2 + \sqrt6}[/math]

 

Now I have to rationalize the demiantor:

[math]\frac{4}{\sqrt4 + \sqrt6} \cdot \frac{\sqrt2 - \sqrt6}{\sqrt2 - \sqrt6} = \frac{4\sqrt2 - 4\sqrt6}{2-6}

[/math]

 

[math]

\frac{4\sqrt2 - 4\sqrt6}{-4} = {-\sqrt2}{-\sqrt6}

[/math]

 

You agree with my answer or not?

:cool:

[math]\cos{\tfrac{-\pi}{12}}=\frac{\sqrt{2}(\sqrt{3}+1)}{4}[/math]

 

[math]\cos{\tfrac{\pi}{12}}=\frac{\sqrt{2}(\sqrt{3}+1)}{4}[/math]

 

(Checked using TI-89 Graphing Calculator in Exact mode (AND radian mode)).

 

Think of the graph of cos... at x=0, y=1... it is symetrical as to the y-axis (as in, if you move the same distance from the y-axis in either direction, you have the same y value...)

 

Therefore, [imath]\cos{x}=\cos{-x}[/imath]

I completely disagree with you dave. [math]\cos \frac{-\pi}{12}[/math] does not equal to [math] \cos \frac{\pi}{12}[/math].

 

To get [math]\sec\frac{-\pi}{12}[/math]' date=' you should have 45 degrees subract 60 degrees which would equal to minus 15 degrees. (-15 or [math']\frac{-\pi}{12}[/math]).

 

To change [math]\sec[/math], you have to get [math]\frac{1}{\cos}[/math]. Therefore,

 

[math]\frac{1}{\cos}(\frac{\pi}{4} - \frac{\pi}{3})[/math]

 

Expanding the [math]\cos[/math] subractive trig identity:

[math]

\frac{1}{\cos}(\cos\frac{\pi}{4}\cos\frac{\pi}{3} + \sin\frac{\pi}{4}\sin\frac{\pi}{3})

[/math]

 

[math]\rightarrow\frac{1}{(\frac{\sqrt2}{2})(\frac{1}{2}) + (\frac{\sqrt2}{2})(\frac{\sqrt3}{2})}

[/math]

 

[math]=\frac{1}{(\frac{\sqrt2}{4}) + (\frac{\sqrt6}{4})}[/math]

 

[math]=\frac{1}{(\frac{\sqrt2 + \sqrt6}{4})} = \frac{1}{1} \cdot \frac{4}{\sqrt2 + \sqrt6} = \frac{4}{\sqrt2 + \sqrt6}[/math]

 

Now I have to rationalize the demiantor:

[math]\frac{4}{\sqrt4 + \sqrt6} \cdot \frac{\sqrt2 - \sqrt6}{\sqrt2 - \sqrt6} = \frac{4\sqrt2 - 4\sqrt6}{2-6}

[/math]

 

[math]

\frac{4\sqrt2 - 4\sqrt6}{-4} = {-\sqrt2}{-\sqrt6}

[/math]

 

You agree with my answer or not?

:cool:

 

Now switch pi over 4 and pi over three so you get -pi over 12... you'll get the same answer!

  • Author

DUH. You're right about the cos function. I just completely forgot that it's an even function. :P Ok can you provide your "Now switch pi over 4 and pi over three so you get -pi over 12... you'll get the same answer!" in equations? I don't really understand where you are talking about. Thanks

Frankly you've done a lot of hard work for very little reason. You have already calculated the value of [math]\cos \frac{\pi}{12}[/math]. So now, use a series of easy arithmetic relations to get your answer:

 

[math]\sec \frac{-\pi}{12} = \frac{1}{\cos \frac{-\pi}{12}} = \frac{1}{\cos \frac{\pi}{12}}[/math]

 

Substitute in your answer and you're done.

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.