Jump to content

Integral dx/cos(x)

Featured Replies

Hello everyone

 

One of the example questions of the acceptance exam for Med school, is the following:

(http://www.ond.vlaanderen.be/toelatingsexamen/nl/modelvragen/files/2013/modelvragen-wiskunde-2013.pdf "Vraag 7")

 

Given:

[math]\int{\frac{dx}{x}}=\ln{x}[/math] and [math]\int{\cos{x}dx}=\sin{x}[/math]

 

Which one of the following statements is true?

 

[math]\int{\frac{dx}{\cos{x}}}=\ln{\sin{x}}+C[/math]

 

[math]\int{\frac{dx}{\cos{x}}}=\sin{\ln{x}}+C[/math]

 

[math]\int{\frac{dx}{\cos{x}}}=\ln{x}+\frac{1}{\sin{x}}+C[/math]

 

[math]\int{\frac{dx}{\cos{x}}}[/math] cannot be calculated on base of the given.

 

The last option should be the correct one.

 

But what about this:

 

[math]\int{\left[1\cdot \frac{1}{\cos{x}}dx\right]}=\frac{x}{\cos{x}}-\int{\left[x d\left(\frac{1}{\cos{x}}\right)\right]}[/math]

 

[math]\cdots = \frac{x}{\cos{x}}-\int{\left[x\cdot\sin{x}\right]}=\frac{x}{\cos{x}}-\int{\left[x\cdot d\left(-\cos{x}\right)\right]}[/math]

 

[math]\cdots = \frac{x}{\cos{x}}+x\cdot\cos{x}+\int{\cos{x}dx}=\frac{x}{\cos{x}}+x\cdot\cos{x}+\sin{x}+C[/math]

Edited by Function

You have the right idea with your 1/1 but with the wrong part of the integral
[math]I = \int {\frac{1}{{\cos x}}dx} [/math]

 

[math] = \int {\frac{{\cos x}}{{{{\cos }^2}x}}dx} [/math]

[math] = \int {\frac{{\cos x}}{{1 - {{\sin }^2}x}}dx} [/math]

If we make the substitution sinx=u

 

[math] I = \int {\frac{{du/dx}}{{1 - {u^2}}}} dx = \int {\frac{1}{{1 - {u^2}}}} du[/math]

This has three different (logarithmic and trigonometric) forms.

 

Does this help?

Edited by studiot

  • Author

You have the right idea with your 1/1 but with the wrong part of the integral

[math]I = \int {\frac{1}{{\cos x}}dx} [/math]

 

 

[math] = \int {\frac{{\cos x}}{{{{\cos }^2}x}}dx} [/math]

 

[math] = \int {\frac{{\cos x}}{{1 - {{\sin }^2}x}}dx} [/math]

 

If we make the substitution sinx=u

 

[math] I = \int {\frac{{du/dx}}{{1 - {u^2}}}} dx = \int {\frac{1}{{1 - {u^2}}}} du[/math]

 

This has three different (logarithmic and trigonometric) forms.

 

Does this help?

 

Hmm.. I understand what you're doing, but I still don't see why my reasoning wasn't all correctly:

 

[math]\int{u\cdot v' dx}=\int{u\cdot dv} = uv-\int{v du}[/math]

 

So why can't [math]u=\frac{1}{\cos{x}}[/math] and [math]v=x[/math]

Because you have made d(1/cosx) in your line 1 equal to sinx in your line 2 rather than sinx/cos2x

 

So work your integration by parts out again.

Edited by studiot

  • Author

Because you have made d(1/cosx) in your line 1 equal to sinx in your line 2 rather than sinx/cos2x

 

So work your integration by parts out again.

 

Ah yes, how could I've forgotten to divide by cos²x...

 

Continuing your method, the answer would be [math]\arctan{u}+C=\arctan{\sin{x}}+C[/math] or [math]\frac{\ln{\left|u\right|}}{2u}+C=\frac{\ln{\left|\sin{x}\right|}}{2\sin{x}}+C[/math]

 

Correct?

Edited by Function

[math]I = \int {\frac{{du}}{{1 - {u^2}}}} [/math]

[math] = \frac{1}{2}\ln \frac{{1 + u}}{{1 - u}}[/math]

[math] = \frac{1}{2}\ln \frac{{1 + \sin x}}{{1 - \sin x}}[/math]

[math] = \ln |\tan \left( {\frac{\pi }{4} + \frac{x}{2}} \right)|[/math]

[math] = \ln |\sec x + \tan x|[/math]

  • Author

[math]I = \int {\frac{{du}}{{1 - {u^2}}}} [/math]

[math] = \frac{1}{2}\ln \frac{{1 + u}}{{1 - u}}[/math]

 

[math] = \frac{1}{2}\ln \frac{{1 + \sin x}}{{1 - \sin x}}[/math]

 

[math] = \ln |\tan \left( {\frac{\pi }{4} + \frac{x}{2}} \right)|[/math]

 

[math] = \ln |\sec x + \tan x|[/math]

 

 

 

(+C, of course.) Thank you.

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.