Jump to content

Accelerating Particles in Spacial Relativity

Featured Replies

First we consider the fact that the norm-square of the four acceleration vector is negative or zero.
Indeed
\[c^2=c^2\left(\frac {dt}{d \tau}\right)^2-\left(\frac {dx}{d \tau}\right)^2-\left(\frac {dy}{d \tau}\right)^2-\left(\frac {dz}{d \tau}\right)^2\]   (1)
Differentiating both sides with respect to time we obtain
\[c^2\frac{d^2 t}{dt^2}\frac{dt}{d\tau}-\frac{d^2 x}{dt^2}\frac{dx}{d\tau}-\frac{d^2 y}{dt^2}\frac{dy}{d\tau}-\frac{d^2 z}{dt^2}\frac{dz}{d\tau}=0\] (2)
We transform to an inertial frame where the particle is momentarily at rest.
\[c^2\frac{d^2 t}{d\tau^2}\frac{dt}{d \tau}=0\]
\[\Rightarrow \frac{d^2t}{d \tau^2}=0\](3)
 [the above holds since v.v=c^2]
Norm square of the acceleration vector in the new frames of reference [that is on transformation ] is negative or zero. Therefore due to the conservation of dot product it is zero or negative in all (inertial) frames of reference: ||a||<=0

[We may prove by alternative techniques that a.a<=0]
We now consider an accelerating particle executing a one dimensional motion in the x direction
\[v_p=v_x=\frac{dx}{dt}\](4)
Proper acceleration component
\[a_t=\frac{d^2 t}{d \tau^2}=\frac{d}{d\tau}\left(\frac{dt}{d\tau}\right)=\frac {d \gamma_p}{d \tau}\\=\gamma_p^3 \frac{v_p}{c^2}\frac{d v_p}{d \tau}= \gamma_p^3 \frac{v_p}{c^2}\frac{d }{d \tau}\frac{dx}{dt }\]
(5)

\[\gamma_p=\frac{1}{\sqrt{1-\frac{v_p^2}{c^2}}}=\frac{1}{\sqrt{1-\frac{v_x^2}{c^2}}}\]
Now,
\[\frac{d }{d \tau}\frac{dx}{dt}=\frac{d}{d\tau}\left(\frac{dx}{d\tau} \frac{d \tau}{dt}\right)= \frac{d}{d\tau}\left(\frac{dx}{d\tau} \frac{1}{\gamma_p}\right)\\=a_x\frac{1}{\gamma_p}-\frac{1}{\gamma_p^2}\frac{d \gamma_p}{d\tau}\frac{dx}{d\tau}= a_x\frac{1}{\gamma_p}-\frac{1}{\gamma_p^2}\gamma_p^3\frac{v_p^2}{c^2}\frac{d }{d \tau}\frac{dx}{dt}\]  (6)
From (5) and (6), we obtain,
\[\Rightarrow \frac{d }{d \tau}\left(\frac{dx}{dt}\right)\left[1+\gamma_p\frac{v_p^2}{c^2}\right]=a_x\frac{1}{\gamma_p}\]
\[\Rightarrow \frac{d }{d \tau}\left(\frac{dx}{dt}\right)=a_x\frac{1}{\gamma_p}\left[1+\gamma_p\frac{v_p^2}{c^2}\right]^{-1}\]
\[a_t=\gamma_p^2 \frac{v_p}{c^2}a_x\left[1+\gamma_p\frac{v_p^2}{c^2}\right]^{-1}\] (7)

For one dimensional motion
\[c^2a_t^2-a_x^2 \le 0\](8)
\[c^2\left[\gamma_p^2 \frac{v_p}{c^2}a_x\left[1+\gamma_p\frac{v_p^2}{c^2}\right]^{-1}\right]^2-a_x^2 \le 0\] (9)
\[\frac{1}{c^2}\gamma_p^4 v_p^2 a_x^2\left[1+\gamma_p\frac{v_p^2}{c^2}\right]^{-2}-a_x^2 \le 0\]

\[\frac{1}{c^2}\gamma_p^4 v_p^2 \left[1+\gamma_p\frac{v_p^2}{c^2}\right]^{-2} \le 1\]

\[\frac{1}{c^2}\gamma_p^2 v_p^2 \left[\frac{1}{\gamma_p}+\frac{v_p^2}{c^2}\right]^{-2} \le 1\] (10)
With v_p=v_x tending to c the left side of the last inequation given by (10)tends to infinity while the right side stays on unity.There is a breakdown.


 

Edited by Anamitra Palit

I think you might have division by zero going on.

Edited by Endy0816

Guest
This topic is now closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.