Jump to content

Differential equation solution when RHS is abstract

Featured Replies

E.g. y'(x) + ay(x) = f(x) where a is a constant.

 

I know we basically get exp(ax), then equation becomes [exp(ax)y(x)]' = exp(ax)f(x). But since f(x) is abstract/not defined, I don't know how I would not get stuck with a recursive integral on RHS after trying to integrate.

Anyone know how to evaluate integral of exp(ax)f(x)?

  • Author

Well, I see the procedure is different. However, looking up the particular solution to use would be easier if I actually knew what f(x) was. I am basically trying to solve for neutron population with a source term but the source function isn't known. I would hazard a guess as to exponential nature which seems most accurate but is there any reason to believe it would not be a polynomial?

Since f(x) is unknown, have you thought about examining the direction field, and the orthogonal trajectories to it, to find out what form it must have?

  Using "variation of parameters":  Given that y'+ ay= f(x), the "associated homogeneous equation" is y'+ ay= 0.  y'= dy/dx= -ay so dy/y= -a dx.  Integrating ln(y)= -ax+ C, y= C'e-ax

Now we look for a solution to the entire equation of the form y(x)= u(x)e-ax

Then y'= u'e-ax- aue-ax.  Putting that into the equation, u'e-ax- aue-ax+ aue-ax= u'e-ax= f(x).  u'(x)= eaxf(x) so u(x)= integral eax f(x) dx.  The general solution to the given differential equation is y(x)= C'e-ax+ e-ax(integral eax f(x)dx).

 

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.