-
Posts
39 -
Joined
-
Last visited
Content Type
Profiles
Forums
Events
Everything posted by K9-47G
-
The vegetative state and awareness
K9-47G replied to Skye's topic in Anatomy, Physiology and Neuroscience
That's interesting. -
No, it's not a novel. He talks a lot about findings from the Human Genome Project. I suppose as far as books are concerned it's comparable to much of Dawkin's works. Informational, but with a more laid-back approach.
-
Has anyone here read it? What did you think of it?
-
This is one optimization problem that I just cant figure out. I'll post what I have... A hiker at point A on a straight road wants to reach, in the shortest time, a point B located 6 miles from the road and 10 miles from point A. The hiker's speed on the paved road is 4 mph and only 2 mph off the road. How far should he continue on the road before heading in a straight line for the point B? I am pretty sure I would have to use the pythagorean theorem because if you draw the problem you get a triange with two sides given. Plus I denoted [math] dr/dt [/math] to be the speed on the road which is 4 mph, and [math] do/dt [/math] to be the speed off road which is 2 mph. I just don't know how to find my objective function. Any help would be appreciated.
-
I noticed that if I type .9999999999 (ten nines) into my TI-83 calculator and press enter, it gives me the answer to be .9999999999 (ten nines), But if I type .99999999999 (eleven nines) into my calculator and press enter it gives the answer to be one. I suppose my TI-83 rounds to the 10th decimal place.
-
For number 3, I thought I would use the logarithmic power rule (not sure of the real name) and therefore the exponent, sinx, can be written as the first term in problem. Then I used the product rule to find the derivative.. [math] y= (\ln x)^{\sin x} [/math] is the same as [math] \sin x\ln x [/math]
-
Ok, thanks a lot.
-
Can you tell if those answers are right?
-
1) Find [math] \frac{d}{dx} log(lnx) [/math] I assume that the log has a base of 10, so I got [math] \frac{1}{x(lnxln10)} [/math] 2) Find the slope of the line tangent to the graph [math] cos(xy)=y [/math] at [math] (0,1) [/math] [math] -sin(xy)(y)+(xy')=y' [/math] [math] -ysin(xy)=y'-(xy') [/math] [math] \frac{-ysin(xy)}{1-x}=y' [/math] Then I just keep getting 0 when I substitute (0,1) in... 3) If [math] y=(lnx)^{sinx} x>1, [/math] Find [math] y' [/math] [math] sinxlnx=sinx\frac{1}{x}+(cosx)(lnx) [/math] [math] \frac{sinx}{x} +cosxlnx [/math] [math] 1+cosxlnx [/math]
-
I think the second one has to do with the purple squares in the background.
-
This problem reminds me of the many examples that Richard Dawkins gave in his book, The Selfish Gene.
-
11131221133112132113212221 whew.
-
Can you please check if my answer is correct. [math] y=sin(sin(sinx)) [/math] [math] y'=cos(sin(sinx))cos(sinx)cosx [/math] (My calculus professor doesn't want our answers simplified.)
-
ok, thanks.
-
[math] g^{(n)}(x)=-n(-1^n)e^{-x}+(-1^n)xe^{-x} [/math]
-
How do you format your math work to look bold and easier to read?
-
So would my formula be g^n(x)= -n(-1^n)e^-x+(-1^n)xe^-x. I know there must be an easier way to write that.
-
The inductive proof is: show true for n=1, assume true for n=k and show true for n=k+1, right?
-
so e^-x derived is -e^-x.... We haven't covered that yet. Now I'm getting g'(x)=e^-x-xe^-x g''(x)=-2e^-x+xe^-x g'''(x)= 3e^-x-xe^-x and so on, but I have no idea how to make an explicit formula out of that because the negatives are alternating.
-
well I did write it out, this is what I got. g'(x)= xe^-x+e^-x g"(x)= xe^-x+2e^-x g'''(x)= xe^-x+3e^-x so I concluded that the formula would be g^n(x)= g(x)+n(e^-x). I'm just not sure if my math is right.
-
So would it be g^n(x)=g(x)+n(e^-x)..... I'm assuming that the derivative of e^-x is e^-x....
-
This is the problem in my book. If g(x)=x/e^x, find g^(n)(x). I don't really understand what the problem is asking me to find. It is in the differentiation section of the book, if that helps at all. I think it may be asking for a formula... By the way, the n in the formula represents how many times to take the derivative of g(x).
-
Thank you so much!
-
Can someone tell me the limit of (x/(2x-2))-(1/((x^2)-1)) as x approaches 1.