RAGORDON2010

Senior Members

31

-6 Poor

• Rank
Quark

Recent Profile Visitors

The recent visitors block is disabled and is not being shown to other users.

1. An Invitation to Visit My Blogs

The Forum members are invited to visit two blogs I have created that expand on my earlier postings under the Special Relativity and Quantum Mechanics categories: “Special Relativity from the Inside Out” LINK DELETED “Introduction to Schrodinger Ensemble Theory” LINK DELETED
2. Schrodinger Ensemble Theory

Introduction to Schrodinger Ensemble Theory Some years ago, I chose to pursue a different approach to the study of the time-independent Schrodinger equation, particularly as it is commonly applied to the following situations: a particle in an infinite potential well, a particle in a finite potential well, the harmonic oscillator, the hydrogen atom. The first group of examples I will discuss are all one-dimensional. The work will generalize when I deal with the hydrogen atom. My concept is simple. For a given potential V(x), suppose $$\psi(x)$$ is the solution to the Schrodinger equation in the form: $$(E)(\psi) = ((h/2(\pi))^2/2m)(d^2(\psi)/dx^2) + (V)(\psi)$$. Suppose further that an ensemble of identical, non-interacting particles is distributed in real space at time t=0 such that the fraction of particles in the region (x, x + dx) is given by $$\psi\psi*dx$$. Suppose, in addition, that these particles exhibit an initial momentum distribution such that the fraction of particles with momentum in the range (p, p + dp) is given by $$\phi\phi*dp$$, where $$\phi(p)$$ and $$\psi(x)$$ are Fourier transforms of each other according to the usual rules. I then require that the fractional density functions be consistent across the two spaces - real space and momentum space. That is, I insist that the fraction of ensemble particles initially positioned in the region (x, x + dx) equals the fraction of ensemble particles with initial values of momentum in the region (p, p + dp). That is, I require that my consistency relationship $$\psi(x)\psi(x)*dx = \phi(p)\phi(p)*dp$$ is satisfied. Finally, I use this consistency relationship to seek a momentum function p(x). On the one hand, it may be possible to find p(x) by inspection or via trial and error. Otherwise, it might be possible to integrate each side of the relationship separately and isolate p(x) from the result. Even then, there will still be some freedom left to decide on the direction of the momentum vectors. Please note that for these Schrodinger ensembles, total particle energy is not a "sharp" variable. The expectation energy averaged across the entire ensemble remains the eigenvalue E, but the energy of any individual particle is always computed from $$p(x)^2/2m + V(x)$$ in the usual manner. Also note that since psi(x) and phi(p) only represent initial conditions placed on the ensemble, the subsequent development of the ensemble over time is determined by applying Liouville's theorem to the ensemble. I have not found a way to develop Schrodinger Ensemble Theory for the time-dependent Schrodinger Equation.
3. Another way of looking at Special Relativity

Must be my browser. Regarding the comments, I ask the Forum to be patient. I think most concerns being raised will self-resolve eventually. A little more background on Related Experiments, and then I will focus on the question of invariance. (Most of us are home-bound anyway because of this damn virus, so it's probably healthy to have some anonymous person on the outside to argue with.) Note to all who view this thread - The count of views to this thread surpasses 60,000. I take this view count very seriously. It is my intention that every one of my posts be an accurate and clear reflection of my thinking. To this end, if I draft a post on, say, Monday, the draft is read/edited and read/edited until, say, Thursday or Friday when I finally submit it to the Forum Unfortunately, this discipline does not hold for my responses to individual comments from Forum members. Those responses tend to be “off the cuff” and ill thought out. In particular, my disrespectful comment on a frame-driven physics in the context of the expression: $$(dS/2)^2 + (vdt/2)^2 = (cdt/2)^2$$. I interprete this expression as pointing to the formation of “Minkowski ellipsoids” that mark off the progress of a particle as it moves along its path of motion under the influence of applied fields. Instead of commenting the way I did, what I should have said, upon reflection, is that neither these ellipsoids nor their defining expressions are intended to be viewed as transformation invariants across a pair of related experiments, or in the conventional sense, across the associated “rest” and “moving” frames of reference. I hope all of this will become clearer to the Forum in my future posts. Special Relativity - A Fresh Look, Part 5 This post begins with the Related Experiments treatment of the “In-Line” Relativistic Doppler Effect and follows with the Related Experiments treatment of the “Transverse” Relativistic Doppler Effect. In his 1905 paper, Einstein* begins his analysis by imagining a monochromatic source placed at rest at a point some distance from the origin of his “rest” frame, Frame K. If we only wish to focus on the in-line Doppler effect, we may limit the positioning of the source to somewhere along the Frame K negative x-axis. *(ref. “Einstein’s Miraculous Year - Five Papers That Changed the Face of Physics", Edited by John Stachel and Published by Princeton University Press, 1998, pgs. 146-149.) Following Einstein’s approach, we write the wave function argument for a light wave emanating from the source and traversing in the positive x direction with frequency f, period T = 1/f, and wavelength w = c/f = cT as it would be recorded by a stationary detector positioned at the origin: $$2(\pi)(f)(t - x/c)$$. For our Related Experiments analysis, we assign the above set-up to our image experiment. We place a monochromatic source with frequency f’, period T’ = 1/f’, and wavelength w’ = c/f’ = cT’ at rest at a distant point somewhere along the negative x’-axis and we place a stationary detector at the origin. We expect that the detector will record a wave function argument equal to $$2(\pi)(f’)(t’ - x’/c)$$. Moving over to our object experiment, we use the a similar set-up, but here we place the source in motion with velocity v in the direction of the stationary detector. We now determine what the detector would record in the object experiment as follows: We substitute for t’ and x’ in the argument $$2(\pi)(f’)(t’ - x’/c)$$ using the Lorentz transformations in the form: $$t’ = (\gamma)(t - vx/c^2)$$, and $$x’ = (\gamma)(x - vt)$$, with $$\gamma$$ defined in the usual way. After some simplification, we will find that the stationary detector records a wave with argument: $$2(\pi)(\gamma)(f’)(1 + v/c)(t - x/c)$$, giving a frequency of $$(\gamma)(f)’(1 + v/c)$$. This represents the relativistic Doppler shift for a source moving toward a fixed observer (or equivalently, for an observer moving toward a fixed source.) To determine the frequency transformation for the case where the source moves away from a fixed observer (or equivalently, where the observer moves away from the fixed source), we need only replace v in the above with -v. For the case of the Transverse Relativistic Doppler Effect (TDE), we follow Einstein’s general analysis, but, for Frame K, we position the source at the origin and place the detector at rest at an arbitrary point, point P, on the positive z-axis some distance from the origin. For source frequency f, period T = 1/f, and wavelength w = c/f = cT, we would expect that this detector will record a plane wave emanating from the source with argument $$2(\pi)(f)(t - z/c)$$. For our Related Experiments analysis, we assign Einstein’s Frame K set-up to our image experiment. We place a monochromatic source with frequency f’, period T’ = 1/f’, and wavelength w’ = c/f’ = cT’ at rest at the origin, and we place the detector at rest on the positive z’-axis at a point P some distance from the origin. As in the Einstein model, we expect that this detector will record a plane wave emanating from the source with argument $$2(\pi)(f’)(t’ - z’/c)$$. Moving over to our object experiment, we use the a similar set-up, but here we locate the source somewhere along the negative x-axis and set it in motion with velocity v in the positive x direction. We now ask how the wave emitted by the moving source as it passes the origin would appear to the detector at point P. We substitute for t’ and z’ in the argument $$2(\pi)(f’)(t’ - z’/c)$$ using the Lorentz transformations in the form: $$t’ = (\gamma)(t - vx/c^2)$$ and z’ = z, with $$\gamma$$ defined in the usual way. After some simplification, we find that the detector records a plane wave with argument $$2(\pi)(f’)(\gamma)(t - (vx/c + z/(\gamma))/c)$$. This represents a plane wave with frequency $$f = f’(\gamma)$$ and direction cosines, (l, m, n), with l = v/c, m = 0, and n = $$1/(\gamma)$$. We see that the light detected by the receiver is blue-shifted by a factor of gamma. Also, we see that the light beam will appear to be emanating from a displaced source, an example of “aberration”. Let $$\theta$$ = angle between the light beam and the x-axis. Let $$\phi$$ = angle between the light beam and the z-axes. Then $$cos (\theta)$$ = l = v/c, and $$cos \(phi) = n = 1/(\gamma)$$. Since $$\theta$$ and $$\phi$$ are complementary angles, $$cos (\phi) = sin (\theta)$$, and we would expect $$(l)^2 + (n)^2 = 1$$, which is true here.

10. Another way of looking at Special Relativity

I wish to continue presenting my insights into a different view of Special Relativity. I took a cue from an invitation from Swansont to open a new thread in Speculations where I posted the following. I found today that Strange has stopped that thread and it seems that I am being directed back to this one. So, for the sake of consistency, I am repeating this post here and will follow up shortly with another one. Special Relativity - a Fresh Look: Overview A fresh look at the underpinnings of Special Relativity is merited for the following reasons - 1. In earlier posts, I’ve shown how to view SR applications as Related Experiments - a pair of matched experiments in which charged particles are subjected to external electromagnetic fields. In the object experiment, the particle is given an initial velocity v and subjected to fields E and H. In the image experiment, fields E’ and H’ are applied to the particle at rest, where E’ and H’ are the transformed images of E and H under the SR field transformations. The 4-space motion of the particle in the image experiment (t’,x’,y’,z’) will then match up with the transformed 4-space motion (t, x, y, z) of the particle in the object experiment under a Lorentz time and space transformation with parameter v. In approaching SR this way, we avoid any discussions or dependencies on clocks that run slow or fast, and meter sticks that shrink or grow, as we move from one experiment to the other. 2. The Relativistic form of Newton’s Second Law of Motion is a Classical Physics formulation. We are given a set of initial conditions, a set of prescribed forces and a differential equation from which we can compute the position, velocity and energy of the particle for any time in the future to any degree of accuracy, and, if we insert negative values of time, we can compute the position, velocity and energy of the particle for any time in the past to any degree of accuracy. This is classical Classical Physics - given knowledge of the initial conditions and applied forces, the entire past and future of the particle is completely determinable. Contrast this with the stochastic behavior of Modern Physics, where SR plays a major role in nuclear physics, the physics of high energy particle collisions, and quantum field theory (QFT). 3. The mention of QFT brings me to my final point - QFT speaks of relationships between particles and fields characterized by a series of minute, discrete interactions in which the particles are accelerated slightly or decelerated slightly and/or deflected slightly and/or rotated, twisted or spun slightly. In contrast, conventional SR theory is marked by functions that are everywhere smooth and continuous. I intend to develop a model of SR which addresses all of the above, stays well within conventional bounds of discussion on the subject, and, here and there, introduces key, defensible ideas. Finally, I ask that the Forum members allow me to retain control over my terminology. For example, I shall refer to Minkowski’s S function as a “Minkowski interval”, and I shall refer to his dS function as a “Minkowski differential interval”.
11. Special Relativity - A Fresh Look

A fresh look at the underpinnings of Special Relativity is merited for the following reasons - 1. In earlier posts, I’ve shown how to view SR applications as Related Experiments - a pair of matched experiments in which charged particles are subjected to external electromagnetic fields. In the object experiment, the particle is given an initial velocity v and subjected to fields E and H. In the image experiment, fields E’ and H’ are applied to the particle at rest, where E’ and H’ are the transformed images of E and H under the SR field transformations. The 4-space motion of the particle in the image experiment (t’,x’,y’,z’) will then match up with the transformed 4-space motion (t, x, y, z) of the particle in the object experiment under a Lorentz time and space transformation with parameter v. In approaching SR this way, we avoid any discussions or dependencies on clocks that run slow or fast, and meter sticks that shrink or grow, as we move from one experiment to the other. 2. The Relativistic form of Newton’s Second Law of Motion is a Classical Physics formulation. We are given a set of initial conditions, a set of prescribed forces and a differential equation from which we can compute the position, velocity and energy of the particle for any time in the future to any degree of accuracy, and, if we insert negative values of time, we can compute the position, velocity and energy of the particle for any time in the past to any degree of accuracy. This is classical Classical Physics - given knowledge of the initial conditions and applied forces, the entire past and future of the particle is completely determinable. Contrast this with the stochastic behavior of Modern Physics, where SR plays a major role in nuclear physics, the physics of high energy particle collisions, and quantum field theory (QFT). 3. The mention of QFT brings me to my final point - QFT speaks of relationships between particles and fields characterized by a series of minute, discrete interactions in which the particles are accelerated slightly or decelerated slightly and/or deflected slightly and/or rotated, twisted or spun slightly. In contrast, conventional SR theory is marked by functions that are everywhere smooth and continuous. I intend to develop a model of SR which addresses all of the above, stays well within conventional bounds of discussion on the subject, and, here and there, introduces key, defensible ideas. Finally, I ask that the Forum members allow me to retain control over my terminology. For example, I shall refer to Minkowski’s S function as a “Minkowski interval”, and I shall refer to his dS function as a “Minkowski differential interval”.
12. Influence of the Universe on Physical Laws

The article that has had the greatest effect on my thinking about physics over the years is “Extended Mach Principle” by Professor Joe Rosen, then at Tel-Aviv University, Israel (AJP, Volume 49, March 1981, pp. 258-264). Of all the fundamental principles Professor Rosen addresses, these three stand out for me - The origin of all laws of physics lies with the universe as a whole. Every single physical property and behavior aspect of isolated systems is determined by the whole universe. If the rest of the universe is taken away leaving only an isolated system, all laws of physics will cease to hold for it, and even space and time will lose their meaning for it. What I would like to do here is pursue these principles with regard to the following two questions: What role does the surrounding universe play in the decay of a single unstable particle at rest in an inertial frame of reference? What role does the surrounding universe play in the retarded rate of decay of these unstable particles as they move rapidly within this inertial frame of reference? I’ve always thought that the decay of an unstable particle is the strongest illustration of Eddington’s “Arrow of Time” - There is a BEFORE, there is an instant of NOW, and there is an AFTER. With respect to my Question 1, it is not hard to point to numerous examples of interactions where particle decay is in some way connected to the surrounding environment - an atomic pile comes to mind, so do particles struck by random photons, neutrinos, or miscellaneous other particles, real or virtual, that “exist” in the wilds of the universe. I intend instead to focus on Question 2. Retarded rate of decay as a function of pure motion is defined by Einstein’s time dilation formula appearing in his Theory of Special Relativity and also by an identical formula appearing in his Theory of General Relativity. Interestingly enough, the time dilation formula applies to any type of unstable particle regardless of mass, charge, spin or any of the other parameters generally applied to unstable particles by particle physicists and depends only on a relative velocity v and light speed c. If we exclude the class of retarded decay rates associated with General Relativity on the basis that the Universe is interacting with these unstable particle through gravity, we are left with the class of retarded decays associated with Special Relativity. I’ve made the point in earlier posts that I believe that Special Relativity Theory belongs firmly in the house of Electromagnetic Theory, including phenomena related to light such as the constancy of light speed in any inertial frame and the Relativistic Doppler Effect. Given this, I would think that retarded decay of speeding unstable particles, a hallmark of SR time dilation, would be in some way connected to the charge and/or magnetic moment, i.e., spin, of the unstable particle. The theoretical physics community has a large storehouse of weaponry with which to attack this phenomenon - QED, QFT, the Standard Model with its quark/gluon interactions, interactions with the universal background radiation, interactions with fields of passing neutrinos, interactions with the Higgs Boson, the influence of Dark Matter and/or Dark Energy. Just for starters, there are the unstable particles detected down here on the Earth’s surface that are created in collisions between atoms in the upper atmosphere and high-energy particles and gamma rays coming in from outer space. They should decay long before reaching the Earth’s surface. If we approach this problem from the point of view of interactions with external electromagnetic fields, then we might look at interactions with the Earth's magnetic field as well as with miscellaneous electric and magnetic fields in the upper atmosphere. Another aspect of the problem is that particle decay is a stochastic process. Any single unstable particle can exist over a range of time intervals - all that can be determined in the laboratory is the mean time to decay from observations of many instances. Accordingly, the application of the SR time dilation factor has to be applied to the mean time observation, which becomes even more tenuous when we account for the fact that there will be some statistical distribution in the velocities of the observed particles relative to the laboratory frame. Be that as it may, as I’ve pointed out in earlier posts, I am still hoping for an explanation for retarded particle decay times that goes beyond simply stating that Special Relativity requires it.
13. Another way of looking at Special Relativity

Studiot , thank you for bringing the Wangsness material to my attention. Oddly, I think his spherical light shell approach to deriving the Lorentz transformations was the vehicle I was first introduced to as a freshman undergrad. I never was happy with it, and I think this dissatisfaction was a prime motivator for me to seek out Einstein’s original 1905 paper to read what the master actually wrote. Currently, I am working on a post targeted for the General Philosophy category. Perhaps we’ll meet up again over there.