Jump to content

Tor Fredrik

Senior Members
  • Joined

  • Last visited

  1. What other components could there be?
  2. I have tried to go through a proof for this which is used in physic texts: $$\nabla \cdot \vec{A}=\frac{\mu _0}{4\pi}\nabla \cdot \int \frac{ J(r')}{|r-r'|} dV'$$ again we use $$ \nabla \cdot \frac{ 1}{|r-r'|}=-\nabla' \cdot \frac{ 1}{|r-r'|}$$ If you go through the equations you would obtain that you could write: $$\nabla \cdot \vec{A}=-\frac{\mu _0}{4\pi} \int J(r') \cdot \nabla' \frac{ 1}{|r-r'|} dV'$$ Then they look at the integration as from integration by parts $$\int_{-\infty}^\infty g \frac{\partial f}{\partial x} dx = [gf]_{-\infty}^\infty - \int_{-\infty}^\infty f \frac{\partial g}{\partial x} dx$$ initially the integral is over the current which does not go from $$-\infty \:\: to \:\: \infty$$. I could perhaps reason and say that integrating from $$-\infty \: to \: \infty$$ would get the same result. But if we extend the reasoning I did get to For the $$-\infty \:\: to \:\: \infty$$ we did get: $$\nabla \cdot \vec{A}=-\frac{\mu _0}{4\pi} \int_{-\infty}^\infty J(r') \cdot \nabla' \frac{1 }{|r-r'|} dV'$$ $$ J(r') \cdot \nabla' \frac{1 }{|r-r'|}=J(r') \cdot[\frac{\partial}{\partial x'}\textbf{i}+\frac{\partial}{\partial y'}\textbf{j}+\frac{\partial}{\partial z'}\textbf{k}] \frac{1}{[(x-x')^2+(y-y')^2+(z-z')^2]^{0.5}}$$ for the first component: $$ g=J_x(r')$$ $$f=\frac{1}{[(x-x')^2+(y-y')^2+(z-z')^2]^{0.5}}$$ If we would have kept the integration limits from dV' it would be apparent that $$ [gf] \neq0$$ If we increase to from $$-\infty \:\: to \: \: \infty$$ it would be apparent that $$\int_{-\infty}^\infty g \frac{\partial f}{\partial x} dx $$ would not change after the increase in integration limits to $$-\infty \: \: to \: \: \infty$$ and $$- \int_{-\infty}^\infty f \frac{\partial g}{\partial x} dx$$ would change since $$\frac{\partial g}{\partial x} $$ is undefied when the current density ends but with from $$-\infty \:\: to \:\: \infty$$ we would get $$ [gf]_{-\infty}^\infty =0$$ which is a change? How does this prove that $$\nabla \cdot A=0$$ ? Additional info: Here is a proof from a physic text just in case. C below is used as current density above:

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.