Jump to content

Trying to understand Spin Decomposition ?

Featured Replies

There is always some "slop" in spin direction, even after QM Measurement, since [math] \mu_z^2 = \left( \frac{\hbar}{2} \right)^2 \hbar^2 \times m^2 < \mu^2 = \frac{3 \hbar^2}{4} = \hbar^2 \times m (m+1)[/math]. Thus, when an electron is "spin up", it is still in a super-position state, of many "wobbling off-kilter" spin states, more-or-less spinning "up", but also w/ components in other directions. Is the following figure an apt visualization, of this process, which would explain why, the "spin up" state, is still a super-position of "half spin left, half spin right" ??

 

qmspindecomposition.jpg

fig.1 --
viewed "from the side", a "spin up" state contains components, which are spinning both clockwise,

and counter-clockwise, relative to that "sideways" direction

Spin up is not a superposition, it's the z component. A superposition implies you have good quantum numbers, and you don't. You can't collapse the superposition with a measurement.

  • Author

If a state prepared as spin "up", is subsequently quantum-Measured, along an orthogonal direction (e.g., "left-right"), the probability is 1/2 that the state will be observed, in either of the two orthogonal, and mutually anti-parallel, states... yes? Thus, the spin "up" state, can be construed, as a SP, of "left" and "right". That's the impression I get, from Kenneth Ford's 101 Quantum Questions.

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.