Jump to content

Circle and Wave

Featured Replies

Hi everybody,

 

We all know that in mathematics, any wave can be thought of as the plot of a circle in the 2D coordinate plane (considering 2D waves only). A wave [math]W[/math] may be represented as:

[math]W(x,t)=Acos(kx-\omega t)[/math]

Where [math]W(x,t)[/math] is the function of the wave's position [math]x[/math] and time [math]t[/math], which gives the displacement from the x-axis, [math]k[/math] is the wavenumber, [math]\omega[/math] is the angular frequency of the circle; [math]\omega=2\pi f[/math], where [math]f[/math] is the frequency of the wave.

Thus the wave [math]W[/math] is a curved line, consisting of points of the form [math](x,Acos(kx-\omega t))[/math]

 

But, I think (and that's my question too) that the position [math]x[/math] and time [math]t[/math] can be represented as functions of the angle of the circle [math]\theta[/math].

 

Here's how...

 

Let the wave velocity be [math]v[/math]. Then,

[math] v=\frac{x}{t}[/math]

Or, [math]x=vt[/math]

But, [math]v=f\lambda[/math], [math]f[/math] is frequency and [math]\lambda[/math] is the wavelength.

So, [math]x=f\lambda t[/math]

But, [math]f=\frac{\omega}{2\pi}[/math]

 

So, [math]x=\frac{\omega}{2\pi}\lambda t[/math]

 

But, [math]\omega=\frac{\theta}{t}[/math]

 

So, [math]x=\frac{\theta \lambda}{2\pi}[/math]

 

Similarly,

[math] t=\frac{\theta}{\omega}[/math]

 

Am I correct ?

Edited by Sriman Dutta

What happened to k in your working?

 

It is in there because ther are multiple solutions to the equation v = x/t

Hi everybody,

 

We all know that in mathematics, any wave can be thought of as the plot of a circle in the 2D coordinate plane (considering 2D waves only). A wave [math]W[/math] may be represented as:

[math]W(x,t)=Acos(kx-\omega t)[/math]

Where [math]W(x,t)[/math] is the function of the wave's position [math]x[/math] and time [math]t[/math], which gives the displacement from the x-axis, [math]k[/math] is the wavenumber, [math]\omega[/math] is the angular frequency of the circle; [math]\omega=2\pi f[/math], where [math]f[/math] is the frequency of the wave.

Thus the wave [math]W[/math] is a curved line, consisting of points of the form [math](x,Acos(kx-\omega t))[/math]

 

But, I think (and that's my question too) that the position [math]x[/math] and time [math]t[/math] can be represented as functions of the angle of the circle [math]\theta[/math].

 

Here's how...

 

Let the wave velocity be [math]v[/math]. Then,

[math] v=\frac{x}{t}[/math]

Or, [math]x=vt[/math]

But, [math]v=f\lambda[/math], [math]f[/math] is frequency and [math]\lambda[/math] is the wavelength.

So, [math]x=f\lambda t[/math]

But, [math]f=\frac{\omega}{2\pi}[/math]

 

So, [math]x=\frac{\omega}{2\pi}\lambda t[/math]

 

But, [math]\omega=\frac{\theta}{t}[/math]

 

So, [math]x=\frac{\theta \lambda}{2\pi}[/math]

 

Similarly,

[math] t=\frac{\theta}{\omega}[/math]

 

Am I correct ?

 

So, [math]x=\frac{\omega}{2\pi}\lambda t[/math]

 

But, [math]\omega=\frac{\theta}{t}[/math]

 

So, [math]x=\frac{\theta \lambda}{2\pi}[/math]

 

[math]x=\frac{\frac{\theta}{t} \lambda t}{2\pi}[/math]

 

without latex, you've got x = ((theta / t ) / 2pi) * lambda t

 

omega doesnt drop the t down with 2pi to cancel

 

you've got a fraction on a fraction t wouldnt cancel and everything should still be * lambda t

Edited by DevilSolution

  • Author

So, [math]x=\frac{\omega}{2\pi}\lambda t[/math]

 

But, [math]\omega=\frac{\theta}{t}[/math]

 

So, [math]x=\frac{\theta \lambda}{2\pi}[/math]

 

[math]x=\frac{\frac{[/size][/background]\theta}{t} \lambda t}{2\pi}[/math]

 

without latex, you've got x = ((theta / t ) / 2pi) * lambda t

 

omega doesnt drop the t down with 2pi to cancel

 

you've got a fraction on a fraction t wouldnt cancel and everything should still be * lambda t

Why?

[math] x=vt=f\lambda t= \frac{\omega \lambda t}{2 \pi} = \frac{\theta \lambda t}{2 \pi t} = \frac{\theta \lambda}{2 \pi} [/math]

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.