Jump to content

md65536

Senior Members
  • Posts

    2032
  • Joined

  • Last visited

  • Days Won

    4

md65536 last won the day on December 11 2022

md65536 had the most liked content!

2 Followers

Profile Information

  • College Major/Degree
    BSc
  • Favorite Area of Science
    cryptocosmology

Recent Profile Visitors

The recent visitors block is disabled and is not being shown to other users.

md65536's Achievements

Primate

Primate (9/13)

399

Reputation

  1. I found some ranges where you can create pieces of any area in the range, but none of them overlap at any of the values of A through E. Was that on purpose? Because, I found some other possible areas of pieces, including one that has 2 different answers. So I'll extend the puzzle with these... Cut a cube of side 2 cms into eight identical pieces such that the surface area of each piece is : F: 7 sq cms G: 6 + ✅2 sq cms H: 5 + ✅5 sq cms Then bonus: For which pairs of A through H is it possible to create 8 identical pieces with a surface area anywhere in between the two? Based on that answer, how would you cut one cube into 8 identical pieces of surface area a, and cut another cube into 8 identical pieces also of surface a but with a different shape than those from the first cube? I'm not certain that I haven't made any errors here!
  2. You can change the area continuously for some of these cuts just by rotating the cube, so I still suspect there might be some with multiple answers.
  3. Yes, I agree. Sorry for the confusion, I've ended up discussing what would happen in both the instantaneous and gradual acceleration cases, and the whole train stopping simultaneously only applies to the gradual case. In the instantaneous case, yes the train stretches again, because the parts of the train don't stop simultaneously in S', and the "car 0" end (the back end in S) continues moving for a short time while the other end has stopped, in the S' frame. Well it seems to work, but it's confusing. In this case of gradual acceleration, in the vfinal frame, what is observed is that we start with the train having constant velocity -v and is length contracted. Then to start the acceleration phase, the n=N end of the train begins to decelerate first, and the train begins to stretch very gradually at first. Other cars decelerate in turn until the n=0 car begins decelerating last. The n=0 car has the greatest proper acceleration (which all frames must agree on), but since it started last, it maintains a greater speed (with negative velocity) than the rest of the train in the vfinal frame during the entire acceleration phase. Then finally all cars arrive at the same velocity of 0 simultaneously, the train fully stretched to its full proper length. This does sound exactly like a time reversal of what is seen in the track frame, with everyone agreeing that the n=0 end has the higher proper acceleration. But everything I'm describing has a locally constant proper acceleration during the acceleration phase, and satisfies Born rigidity as far as I understand it. Are we talking about the same thing? Another possible source of confusion is that constant proper acceleration isn't constant coordinate acceleration in any single frame, and I may have mistook one for the other in what you wrote.
  4. I think I figured out the basic idea in the track frame, for Born rigidity or anything else that approximately maintains the proper length of the train with non-instantaneous acceleration. In the track frame, the back of the train always accelerates at a higher rate than the front, so that as velocity increases, the train contracts. Then when acceleration stops, the back of the train stops accelerating first, when it reaches velocity v. The rest of the train is moving slower and continues to accelerate (and contract), with the front of the train being the last to stop accelerating, at which point the whole train is moving at v and is length-contracted by gamma. This is consistent with allowing the whole train to stop accelerating simultaneously in a moving frame (v's frame, if I got it right).
  5. The result I get is that as soon as a car accelerates to its new speed, it is in a different inertial frame in which the car in front has accelerated first (or rather decelerated to rest in this frame), and is already out of the way. I argued before that I thought it wouldn't feel any stress due to causality, but now I'm sure that's wrong. Still, I don't see a result from SR that is theoretically impossible for every type of "train". I mean that there's a solution where any individual part (car) of the train has a constant proper acceleration over time, not that all parts have the same proper acceleration. But yes, if the train is meant to reach a specific velocity relative to the tracks, and then stop accelerating, there should be a solution that uses a set of constant proper accelerations, beginning simultaneously in the momentary rest frame of the train, and stopping simultaneously in another momentary rest frame of the train. Such a rest frame should exist because Born rigidity maintains the proper length of the train. Or another way to look at it, the train stopping at its final velocity should be simultaneous in that frame, because the process should be time-reversible. Ie. when the back car is "already up to speed", all of the cars are. The cars had different proper accelerations for different proper times, because they started simultaneously in one frame, and ended simultaneously in another. However... the more I think about it the less I'm sure I have that figured out correctly, because what I just described doesn't seem to make sense from the tracks frame. Maybe an acceleration phase and a separate deceleration phase are both needed, not just a stop to the acceleration. I'll have to think about that more because 2 different answers make sense in 2 different frames, so for sure I'm wrong somewhere. Yes, the same solution works. The point of Born rigidity is that all of the points or parts of the object are accelerated individually, it never specifies "only two engines" unless the train consists of only those 2 points (such as 2 rockets with an imaginary string between them). Besides, if your solution works for cars of length L_0, then it would work for a train with one engine and a length of L_0. Either your solution works on the train as a whole with certain restrictions, or it fails for cars when there are no restrictions (unless you make n infinitely high and L_0 infinitesimal, but then you're just describing a solid rod where every part of it is accelerated locally). Interesting that the second form is what you posted in the very first post, and the first form I posted later, and they are the same but I didn't realize it. We were talking about the same thing all along.
  6. I don't understand, is this an interpretation of OP's stated problem, or are you rejecting instantaneous acceleration and substituting your own problem? If the latter, why not just apply Born rigidity? Is that what you're trying to do? If so, why approximate, and why not allow constant proper acceleration at each part or car of the train? Are you treating the train differently because it's made up of cars, and if so why would a solution for Born rigidity that works on the train as a whole, not work for the individual cars?
  7. Did you mention you already figured this was wrong? I figure that the correct velocity should be greater than c for all v<c, otherwise the accelerations won't be simultaneous in any frame. As well, when v approaches 0, this velocity should approach infinity, because for vanishing v, the frame in which the accelerations are simultaneous approaches the track's frame.
  8. You're not still using "rapidity" as a synonym of acceleration, are you?
  9. Just to expand the realm of possibility, the rail gun wouldn't have to be in the ground/tracks frame. Both what I described and what OP did, here, describe a set of events that are simultaneous in some frame, when gamma is high like 2 in the example. It's as easy to coordinate the events as it is to synchronize a (maybe large) set of clocks in that frame. Then, the rail gun would only need to be as long as the length-contracted train in that frame (by a factor of less than 2 in this example, because the train's speed is less than v in that frame). When figuring out the rate at which the acceleration events happen along the length of the train, I saw that the proper length of the train gets simplified out of the equation. That means that the rate is the same whether the train is short or long. Whether "long" means 1 m or a billion light years, the same answer applies (with the railgun length proportional to train length, as is the timing in the ground frame). (Then yes, it would be impossible to accelerate a full-size train fast enough, so just make the train out of electrons or something lighter, etc.)
  10. Nothing physical is moving faster than c, it's just the timing of the local accelerations across the length of the train moving faster than c. It's only the phase velocity of this wave that's traveling faster than c. That's fine because the propagation of the wave isn't causal; the parts of the train are accelerating independently of each other. I can avoid calling it a wave to be less confusing. Yes, I've assumed "local engines" all along, that was implied by OP. I'm just saying the engines don't have to be part of the train itself. I'm trying to talk about the effects of SR without getting hung up on the difficulties of building a physical version of a thought experiment. I don't want to debate whether it's possible for 2 events to be simultaneous ie. not causally connected.
  11. As mentioned, this isn't a rigid body and that's fine because it's not being accelerated as a rigid body, rather all the parts of the train are accelerated independently, as if it is modelled as a soup of particles. I also think it's not describing a practical impossibility, where every smallest part of the train needs to be a train engine, because the cause of the acceleration can be external. For example the train could be a metal object accelerated by a rail gun. I think it's possible that the train might not feel any stress from being stretched or compressed, it might only feel the local proper acceleration, temporal distortion, etc. This is because the acceleration "wave" crosses the train at a rate faster than c. For any particle on the train, even though the one "behind" it has started moving first, the particle has accelerated before the one behind has caught up and before any causal effect of the particle behind it has reached it. And even though the particle is moving before the one in front moves, by the time the particle gets to the location of the one in front, the one in front has already accelerated. This is true no matter how small you make the separation of the particles. (I guess this assumes that any field effects that can be felt, like EM field, are also accelerated along with the particles. Is this impossible?) On second thought... after a particle has accelerated it is now in the new inertial frame, in which the particle in front has already accelerated first! It has accelerated to rest. This gives an observer in the middle of the train (and who accelerates along with it) a bizarre account of what happens! According to her, the rear of the train begins to compress forward (not fast enough to see or feel it) while the front of the train remains stationary. Then she feels proper acceleration, then the rear of the train begins to stretch backward (but not faster than can be felt??? It seems this compression would have to be visible) while the front of the train again remains stationary! That seems surprising enough that I wonder what details I'm missing or getting wrong. Edit: Due to delay of light I think she'd see the front of the train appear to be approaching and stretched out (due to aberration of light). These are images of the front of the train before those parts accelerated, seen in the post-acceleration frame. But if it can be seen it can be felt?
  12. https://en.wikipedia.org/wiki/Born_rigidity The "Class A" section contains an entire class of applicable motions. Instantaneous (not generally simultaneous) acceleration using the solution I proposed (different from OP's I think), does not satisfy Born rigidity, because it requires different parts of the train to accelerate at different times, in the 2 rest frames (before and after acceleration) of the train. Therefore the train's length changes in those frames, and its proper length doesn't even seem defined while accelerating. However, it should be the only solution that involves a single instantaneous acceleration at each point of the train, with which the train has the same proper length before and after the acceleration. It would seem not even Born rigidity can be satisfied with an instantaneous acceleration. However, OP's proposal never mentioned anything about a requirement of rigidity. For that matter, they neither required that the proper length of the train is the same before and after, I assumed that. The way I figure it, if you have the back of the train accelerate at time 0, the rest of the train accelerates over time until the front of the train finally accelerates when the length of the train has become L/gamma in the initial frame, where L is its original proper length. By that time, the back of the train has traveled a distance of (L - L/gamma) at velocity v. Therefore the time when the front of the train accelerates would be t=d/v = (L - L/gamma)/v. Then the velocity of the "wave" would have to be d/t = Lv/(L - L/gamma) = v/(1 - 1/gamma) For gamma=2, it seems intuitive that the wave would have to travel at 2v, to reach the front of the train at the same time that the back of the train traveling at v gets halfway there. With v = 3^0.5 c/2, I get a velocity of the wave equal to 3^0.5 c. Like you said this is faster than c, so it's non-causal and needs local forces to accelerate the parts of the train.
  13. This doesn't refute the validity of Born rigidity especially in terms of kinematics. If you understood Born rigidity you'd know this thread is concerned with the "irrotational motions" class of Born rigidity, which is broken if the train turns. So bringing it up is a strawman argument. It sounds like you're trying to argue that Born rigidity can't be satisfied, by bringing up irrelevant counter-examples where it is not satisfied.
  14. I've thought about it more and I still think my first reply is correct. The issue is, if there's an instant change in velocity, does length contraction apply to all of the velocities in between as if it accelerates through them all in an instant, and I say it doesn't. SR doesn't predict the effects of acceleration, rather it is an assumption that acceleration doesn't have an effect, only velocity itself does (the "clock postulate"). SR neither says that the train would survive the acceleration, nor that it wouldn't. It says the train would be contracted at the beginning velocity, and also at the end, but not what strains would happen to the train in the zero length of time in between. So, whether the train can accelerate instantly or not is an assumption we have to make, not one we can derive from SR itself. If the train parts can instantly accelerate from 0 to v, then I think my answer works, and if not then it doesn't, and SR doesn't change that. But yes, if there's any frame in which a train is moving and then all parts of it simultaneously stop, SR says its new proper length is smaller than it was, so it physically must get squished. Going from -u to +u instantaneously doesn't have a moment when it is at rest, so SR does not by itself say it will behave as if at rest in that case.
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.