Jump to content

md65536

Senior Members
  • Content Count

    1918
  • Joined

  • Last visited

  • Days Won

    3

md65536 last won the day on December 15 2020

md65536 had the most liked content!

Community Reputation

382 Beacon of Hope

2 Followers

About md65536

  • Rank
    Primate

Profile Information

  • College Major/Degree
    BSc
  • Favorite Area of Science
    cryptocosmology

Recent Profile Visitors

The recent visitors block is disabled and is not being shown to other users.

  1. Yes, exactly, so we can discuss what would happen or be seen in a particular model of a black hole, but must be careful not to make the same claim for just "a black hole" in general. Having the universe's entire history in your causal past would describe a particle that is stuck on (or asymptotically approaching) some horizon, with a proper time that approaches infinitely slower than the rest of the clocks in the universe. That would be similar to an observer who could hover infinitely close to a Schwarzschild BH event horizon. So, EM repulsion exceeding gravity would make sense... it wou
  2. Looking for more details, I came across this: Falling into the Schwarzschild black hole. Important details S. Krasnikov https://arxiv.org/abs/0804.3619 which is surprising, but is a reminder that the details describing a Schwarzschild BH can be vastly different for BHs in general. The Kruskal diagrams are of Schwarzschild spacetimes.
  3. This is wrong, as Kino wrote and the diagram shows. It seems you never lose sight of your feet, even if you dropped them in ages before the rest of you went in, but you'd also never see them hit the singularity (of course). You just see older images from when they were above where you are now, and there'd be a last possible image of them which depends on how long ago they entered, so I suppose they'd have to appear increasingly red-shifted.
  4. That's an interesting point. Indeed, "Earth" receiving your message in the far distant future would say "that never happened." If your head could at that point, separate from the feet and escape the black hole, it could go from its local inertial frame where the feet crossed, and return to Earth where the feet never crossed. That seems weird, but it's no weirder than the Andromeda "paradox". Everyone here agrees one way or another that the head while outside the EH never sees light that originated inside, so nothing contradictory is measured by anyone (no observation of an event that can
  5. But the future light cone interior is in the direction of the BH interior, that doesn't matter? Is it that the EH is a null surface, but also a light-like surface, yet the latter does not give you enough information to define the horizon? My main argument in this thread is basically that you can see what is below you, because it doesn't involve a photon increasing its r-coordinate, but rather the observer decreasing its r-coordinate to reach that light. Is that argument wrong? Inside the horizon, the r-coordinate of all photons must decrease over time. Near the horizon, the photon
  6. re. "The path of light that goes from feet to head also leads to the singularity." Sure, I'll use another diagram: Here, the purple line could represent a path of light that goes from an event at the feet, and intersects the head's green world line, and ends up at the singularity. The pink line represents light from an event, that is aimed 'directly' toward the singularity. It has a slope of 45 degrees, representing a coordinate speed of c. No object anywhere on this graph can have a slope shallower than 45 degrees. Purple represents light from the same event, dire
  7. I agree, that would be better. Wouldn't the shape and orientation of the light cones be independent of the motion of the light source?, while the shape of the source's world line would be entirely dependent on it. So not all world lines would be pointed locally along the axis of the cone. I think the image is a fair representation of the world lines of inertial particles entering the BH at near the speed of light, which is not at all what I wanted to show.
  8. I've attached an image showing light cones inside the horizon. The labelled events are: A - Feet pass the EH. B - Head passes the EH. C - Astronaut twitches her feet D - Astronaut sees her feet twitch E - Photons from twitched feet reach the singularity. The scale of this is out, the astronaut twitches her feet in the short time before the head has entered the BH. More realistically, the head's world line would be very close to the feet's. The light cones inside the BH show that light from a single event does not take the same amount of time to reach th
  9. The slowing of time is only relative. An external observer measures the infalling clock slowing relative to its own, but the infalling observer measures their own local clock's proper time ticking at a rate of 1s/s. Their own clock does not stop as they fall into a BH. If an infalling astronaut would lose sight of their feet, and smaller distances, this would imply that a light clock would stop functioning, or at least would stop depending on its orientation. Theory doesn't predict that. I really didn't expect there to be debate after a resolution was posted. You still have l
  10. Isn't that the same thing? Yes, but if both ships fell in, they could remain close enough to relative rest to not notice, for some time. Just like a person falling into a large enough black hole doesn't feel themselves being pulled apart for some time, even if tidal forces are always present (though negligible here). I'm talking about a black hole so immense that the gravitational effects are very weak at r_s, like an r_s of tens of billions of lightyears. If that's too small, maybe a billion times that! If you make it big enough, you should be able to continue falling toward the singu
  11. Regardless of what happens inside the BH, the original scenario doesn't involve any light from inside the EH whatsoever. It doesn't say anything about what happens after some moment when the astronaut's head is less than a body's length from the EH, still outside, still only receiving light from outside the EH. But, I think you're also wrong about what happens inside the Schwarzschild BH. Light inside can still move in different directions. Draw some light cones on a diagram. Yes, all light cones inside the BH will be tilted so that all light paths head toward the singularity, but the lig
  12. I agree with Halc. When the feet cross the EH, the photons making up the image of that, and directed outward, forever remain at the EH, which is a lightlike surface. It's stationary in the very distant observer's coordinates, but locally moves at the speed of light. The astronaut notices nothing unusual because the EH and image move past its head at the speed of light, just like photons from the feet do in usual circumstances.
  13. An astronaut falls into an extremely large Schwarzschild black hole, so large that they don't notice any spaghettification-like effects. Their head can see their feet the entire time, and their helmet is constantly sending information to Earth, say. At some point, the astronaut sends a message basically saying "My feet are now inside the event horizon", and Earth eventually receives that message. Is there a mistake with this scenario? What prevents the astronaut's head outside the event horizon from seeing their feet inside the horizon, and how does that look to them if they're watching t
  14. Yes, I think you're proving your point. If you don't understand something, it can seem god-like. If you read what Einstein wrote and understand even just parts of it, it's easy to see that it's basically a set of assumptions that match observations of reality, and some mathematical consequences of those, whose predictions also match observation. There's nothing god-like about it. But if you don't read it, it's an unknown, and it's already been discussed that people tend to attribute what's unknown to gods. So it sounds like you're assuming that Einstein's work will become an unknown, but
  15. Why do you think it would turn into a BEC if hot? A BEC involves the atoms being in the lowest quantum states, not highly energetic ones. The laser cooling described in the thread is done to take energy away from the atoms. A layman explanation of a BEC (and possibly completely wrong, others please correct me) is that when a particle's speed is very close to zero (ie. very low temperature), you know the momentum of it to high certainty, so due to the uncertainty principle, you can only know the position of it to lower certainty. With a cloud of particles acting as if the particles are eac
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.