Jump to content

trying to understand gas cloud collapse ?

Featured Replies

From the Virial Theorem,

 

[math]K = -\frac{1}{2} U[/math]

 

[math]\frac{M k_B T}{\mu} \approx \frac{3}{10} \frac{G M^2}{R}[/math]

 

[math]\therefore R \; T = \frac{3}{10} \frac{G \mu}{k_B} M[/math]

Now, the Luminosity, radiated away as heat:

 

[math]L = 4 \pi \sigma R^2 T^4 = \frac{4 \pi \sigma}{R^2} \left( R \; T \right)^4[/math]

is balanced by the release, of GPE:

 

[math]L = -\frac{dU}{dt} = \frac{3}{5} \frac{G M^2}{R^2}\dot{R}[/math]

Er go,

 

[math]\frac{4 \pi \sigma}{R^2} \left( R \; T \right)^4 = \frac{3}{5} \frac{G M^2}{R^2}\dot{R}[/math]

 

[math]4 \pi \sigma \left( \frac{3}{10} \frac{G \mu}{k_B} M \right)^4 = \frac{3}{5} G M^2 \dot{R}[/math]

 

[math]\frac{2 \pi \sigma}{G} \left( \frac{3}{10} \right)^3 \left( \frac{G \mu}{k_B} \right)^4 M^2 = \dot{R}[/math]

Assuming primordial gas composition (X = 3/4, Y = 1/4), so that the average particle mass is ~0.6 mH, w.h.t.:

 

[math]\dot{R} \approx 100 km/s \times \left( \frac{M}{M_{\odot}} \right)^2[/math]

 

[math]\approx \frac{1}{3} 10^{-3} c \times \left( \frac{M}{M_{\odot}} \right)^2[/math]

If so, then the "implosion speed" of collapse [math]\dot{R} \rightarrow c[/math] near [math]M \rightarrow 50 M_{\odot}[/math]. Are such speeds plausible ?

 

Such massive proto-stars collapse, on the MS, in ~104yrs:

 

640px-Hayashi_track_it.svg.png

And, Molecular Cloud 'cores' are typically <1 lyr across ; however, cloud collapse occurs isothermally (Sterzik 2003, Sterzik 2003). Perhaps isothermal collapse accounts for the slower observed collapse speeds ?

  • 2 weeks later...

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.