Jump to content

Theorem - Uniform convergence


estro

Recommended Posts

1. The problem statement, all variables and given/known data

 

Suppose:

 

[math]f(x)\ and\ f'(x)\ are\ continuous\ for\ all\ x \in R [/math]

 

[math]For\ all\ x \in R\ and\ for\ all\ n \in N[/math]

[math]f_n(x)=n[f(x+\frac{1}{n})-f(x)][/math]

 

[math]Prove\ that\ when\ a,b\ are\ arbitrary,\ f_n(x)\ is\ uniform\ convergent\ in\ [a,b][/math]

 

 

3. The attempt at a solution

 

 

[math]\lim_{n\rightarrow \infty} f_n(x)=\lim_{n\rightarrow \infty} n[f(x+\frac{1}{n})-f(x)] = \lim_{t\rightarrow0} \frac {f(x+t)-f(x)}{t}=f'(x)[/math]

 

[math]\max_{[a,b]}|n[ f(x+\frac{1}{n}) -f(x)]-f'(x)|=|n[ f(x_0+\frac{1}{n}) -f(x_0)]-f'(x_0)|=[/math][math]|\frac {f(x_0+t)-f(x_0)}{t}-f'(x_0)|\rightarrow0[/math]

 

I fear that I miss something terribly important.

*I left out all the little technical details to make things shorter.

Link to comment
Share on other sites

Good problem! I'd originally thought you weren't along the right lines, but now I've studied things a little better (and jogged my memory regarding supremums :P) I can see the logic. As far as I can tell, it simply needs tidying up. Here's my version.

 

Since [imath]f_n[/imath] and [imath]f[/imath] are continuous, it follows that [imath]f_n-f[/imath] is continuous on [imath][a,b][/imath], and hence there exists [imath]x_0[/imath] such that

 

[math]\sup_{x\in [a,b]} |f_n(x)-f(x)| = |f_n(x_0)-f(x_0)|[/math].

 

Then,

 

[math]\lim_{n\to\infty} \sup_{x\in [a,b]} |f_n(x)-f(x)| = \lim_{t\to 0} \left| \frac{f(x_0+t) - f(x_0)}{t} - f'(x_0)\right| = 0[/math],

 

so [imath]f_n[/imath] converges uniformly to [imath]f[/imath].

Edited by dave
Link to comment
Share on other sites

[math]\mbox{f(x) and f'(x) are continuous for all x in R. (*1)} [/math]

 

[math]\mbox {Let a,b in R\ so\ that\ without\ the\ loss\ of\ generality } a<b.[/math]

 

[math]\mbox {Let x in [a,b]. (*2)} [/math]

 

[math]\lim_{n\rightarrow \infty} f_n(x)=\lim_{n\rightarrow \infty} n[f(x+\frac {1} {n})-f(x)]=[/math][math][t_n=1/n]=\lim_{t\rightarrow0} \frac {f(x+t)-f(x)} {t}=f'(x). \ (*3)[/math]

 

[math]\mbox{(*1) and (*2) and (*3) } \Rightarrow\ g(x)=|f_n(x)-f(x)| \mbox{ is continuous for all x in R.\ (*4)}[/math]

 

[math]\mbox{(*2) and (*4)} \Rightarrow\ \mbox {Weierstrass Theorem } \Rightarrow\[/math][math] \exists\ \max_{[a,b]} g(x)=g© \mbox { c in [a,b].\ (*5)} [/math]

 

[math]\mbox {(*5) and (*1) } \Rightarrow\ \forall\ x\in[a,b]\ \Rightarrow\ \sup_{[a,b]}|f_n(x)-f(x)|=|\frac {f(c+t)-f©} {t} -f'©|\rightarrow0[/math]

 

[math]\Rightarrow \mbox { Basic lemma for uniform convergence }[/math][math] \Rightarrow\ f_n(x) \mbox{ is uniform convergent in [a,b], where a,b are arbitrary.} [/math]

 

QED

 

[Edit] "Basic lemma for uniform convergence" is sounds little funny but I'm sure you'll understand what I meant.

[Edit] I'm afraid of having the wrong intuition about uniform convergence, I hope you will be be able to say if I understand the idea from my proof.

[Edit] If only I could prove g(x) is monotonic [such thing is possible?] then my proof would be a lot shorter, using Dini Theorem.

Edited by estro
Link to comment
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.