Jump to content

Integrate (e^x)/(1+e^(3x)) dx

Featured Replies

Hi everyone!

 

This is my first post on this site so if I'm breaking any rules I appolgize in advance.

 

For an opcoming physics entrance exam i'm repolishing my math skills but I just can't seem to solve this problem:

 

Integrate: (e^x)/(1+e^(3x)) dx

 

I've tried substituting with : u = e^x, u = e^3x and u= 1+e^3x, but nothing seems to work out. Maybe i'm just missing something very obvious but I'm just lost at this point :confused:

 

thanks in advance!

The u-substitution u=e^x is a good place to start. Then du=e^x dx, so

 

[math]\int\frac{e^x}{1+e^{3x}} dx\quad\to\quad\int \frac {du}{u^3+1}[/math]

 

So this changes the problem from an exponential integral to a rational polynomial. Next step: Use the fact that u+1 divides any polynomial of the form un+1. You will get u+1 times a quadratic. Use partial fractions. You'll still have an ugly beast, but a completely solvable ugly beast.

  • Author

Thanks for your quick response, but don't quite understand what you mean by "Use the fact that u+1 divides any polynomial of the form un+1". I'm from Holland so maybe you're using different terminology than I'm used to but could you please explain me that part a bit more?

Divides, in that context, is a synonym for "is a divisor of". 2 and 3 divide 24, but 5 does not.

 

I was a bit hasty in my typing. I said that u+1 divides any polynomial of the form un+1. I should have qualified that with if n is odd. Fortunately, 3 is odd. In other words, there exists a quadratic q(x) such that (u+1)*q(x) = u3+1.

  • 2 weeks later...

[math]\int\frac{e^x}{e^x+1}\frac{1}{e^{2x}-e^x+1}dx [/math]

 

[math]\int\frac{4e^x}{3(e^x+1)}\frac{1}{(\frac{e^{2x}-e^x+1}{3})+1}dx [/math]

 

[math]\frac{4}{3}\int\frac{e^x}{(e^x+1)}\frac{1}{(\frac{e^{2x}-e^x+1}{3})+1}dx [/math]

 

[math] x' = \frac{-1+2e^x}{\sqrt3}[/math]

 

used prime to denote other x

 

[math] dv = \frac{e^x}{1+x'^2}dx = \frac{1}{1+x'^2}dx' [/math]

 

[math] v = tan^{-1} [\frac{-1+2e^x}{\sqrt3}][/math]

 

[math] u = \frac{1}{1+e^x} [/math]

 

[math] du = -\frac{e^x}{(1+e^x)^2} [/math]

 

[math] \frac{2\sqrt{3}}{3(e^x+1)}tan^{-1}[\frac{-1+2e^x}{\sqrt{3}}]+\frac{2\sqrt{3}}{3}\int\frac{e^x}{(e^x+1)^2}tan^{-1}[\frac{-1+2e^x}{\sqrt3}]dx [/math]

 

ummmmmmmmmmmm

 

1) [math] \int tan^{-1} \frac{x}{a} dx = x [tan^{-1} [\frac{x}{a}] - \frac{a}{2}ln(a^2 + x^2)] [/math]

 

those poor trees................ :-(

 

2) [math] \frac {\sqrt{3}e^x}{2-2e^x+2e^{2x}}dx [/math]

 

better.......

 

[math] u=tan^{-1}[\frac{-1+2e^x}{\sqrt3}] [/math]

 

[math] du=\frac {\sqrt{3}e^x}{2-2e^x+2e^{2x}}dx [/math]

 

[math] dv=\frac{e^x}{(1+e^x)^2}dx[/math]

 

[math] v = - \frac {1}{1+e^x} [/math]

 

[math] \frac{2\sqrt{3}}{3}(\frac{1}{1+e^x}tan^{-1}[\frac{-1+2e^x}{\sqrt{3}}]-\frac {1}{1+e^x}tan^{-1}[\frac{-1+2e^x}{\sqrt3}]+\int\frac {1}{1+e^x}\frac {\sqrt{3}e^x}{2-2e^x+2e^{2x}}dx) [/math]

 

[math] \frac{2\sqrt{3}}{3}(\int\frac {1}{1+e^x}\frac {\sqrt{3}e^x}{2-2e^x+2e^{2x}}dx) [/math]

 

[math] \int\frac {1}{1+e^x}\frac {e^x}{1-e^x+e^{2x}}dx [/math]

 

ooooopssy

 

 

[math] \int\frac {e^{-x}}{1+e^{-x}}\frac {e^x}{1-e^x+e^{2x}}dx [/math]

 

[math] u = \frac {e^x}{1-e^x+e^{2x}} [/math]

 

[math] dv = \frac {e^{-x}}{1+e^{-x}} dx [/math]

 

 

Wolfram result:

 

[math] \frac{tan^{-1} [\frac{-1+2e^x}{\sqrt3}]}{\sqrt3}+\frac{1}{3}ln(1+e^x)-\frac{1}{6}ln(1-e^x+e^{2x})[/math]

Edited by buttacup
Consecutive posts merged.

You didn't use the hint to make the u-substitution. When you do make a u-substitution, don't be so quick to back-substitute.

 

From post #2,

The u-substitution u=e^x is a good place to start. Then du=e^x dx, so

 

[math]\int\frac{e^x}{1+e^{3x}} dx\quad\to\quad\int \frac {du}{u^3+1}[/math]

 

Now factor [math]u^3+1[/math] as [math]u^3+1=(u+1)(u^2-u+1)[/math] and use partial fractions:

 

[math]

\frac 1 {u^3+1} = \frac 1 3 \left(\frac 1 {u+1} - \frac{u-2}{u^2-u+1}\right)

[/math]

 

Note that [math]d(u^2-u+1) = 2u-1[/math]. That second factor is a bit easier to deal with if it is rewritten using this fact:

 

[math]\frac{u-2}{u^2-u+1} =

\frac 1 2 \left(\frac{2u-1}{u^2-u+1} \frac{3}{u^2-u+1}\right)[/math]

 

With this,

 

[math]

\frac 1 {u^3+1} =

\frac 1 3 \,\frac 1 {u+1}

- \frac 1 6\, \frac{2u-1}{u^2-u+1} + \frac 1 2\,\frac 1 {u^2-u+1}

[/math]

 

Now integrate:

 

[math]

\int \frac{du}{u^3+1} =

\frac 1 3 \ln(u+1) - \frac 1 6 \ln(u^2-u+1)

+\frac 1 2 \int \frac{du}{u^2-u+1}

[/math]

 

How to deal with this final integral? Make another u-substitution. Write [math]u=av+b[/math] such that [math]u^2-u+1=c(v^2+1)[/math]. The solution is [math]u=\frac 1 2 \left(\sqrt 3 v+1\right)[/math]. With this, [math]du=\frac{\sqrt 3}{2} dv[/math] and [math]u^2-u+1=c(v^2+1) = \frac 3 4 (v^2+1)[/math]. Thus

 

[math]\int \frac{du}{u^2-u+1} =

\frac 2 {\sqrt 3} \int \frac{dv} {v^2+1} = \frac 2 {\sqrt 3}\tan^{-1} v[/math]

 

Now back-substitute with [math]v=\frac{2u-1}{\sqrt 3}[/math]:

 

[math]\int \frac{du}{u^2-u+1} =

\frac 2 {\sqrt 3}\tan^{-1}\left(\frac{2u-1}{\sqrt 3}\right)[/math]

 

And thus

 

[math]

\int \frac{du}{u^3+1} =

\frac 1 3 \ln(u+1) - \frac 1 6 \ln(u^2-u+1)

+\frac 1 {\sqrt 3} \tan^{-1}\left(\frac{2u-1}{\sqrt 3}\right)

[/math]

 

Back-substitute again, with [math]u=e^x[/math]:

 

[math]

\int\frac{e^x}{1+e^{3x}} dx =

\frac 1 3 \ln(e^x+1) - \frac 1 6 \ln(e^{2x}-e^x+1)

+\frac 1 {\sqrt 3} \tan^{-1}\left(\frac{2e^x-1}{\sqrt 3}\right)

[/math]

Edited by D H
Fix math error

I can sleep better now............... thank you!

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.