Jump to content

squaring the circle

Featured Replies

A given circle with area A = 1 has a radius = 1/sqrt(pi). In this case there exist a square with the sides of length = 1 which has an area equal to 1. This problem is referred  as a "squaring the circle". Due to the "irrational" and "transcendental" nature of number pi , squaring of circle is not possible to be constructed only by ruler and compass. However, I've read in an old mathematical book, that a construction is possible only in case when circle area A=1, without any further explanation given. Is there any one who can support this claim? 

22 minutes ago, Ejup Dermaku said:

A given circle with area A = 1 has a radius = 1/sqrt(pi). In this case there exist a square with the sides of length = 1 which has an area equal to 1. This problem is referred  as a "squaring the circle". Due to the "irrational" and "transcendental" nature of number pi , squaring of circle is not possible to be constructed only by ruler and compass. However, I've read in an old mathematical book, that a construction is possible only in case when circle area A=1, without any further explanation given. Is there any one who can support this claim? 

That is not what "squaring the circle" means. Given a circle of area 1, yes, there also does exist a square also of area 1. That is not a problem. The problem is that from a line segment of length equal to the radius (or equivalently the diameter) of such a circle, it is not possible only using ruler and compass to construct a line segment to make a side of a square of the same area as the circle.

The claim in your old book does not make immediate sense. It is true that if you are given a line segment of unit length, then you can quite obviously construct a square of unit area. But having been additionally given a circle of unit area would not be helpful in any way to do it.

23 minutes ago, taeto said:

That is not what "squaring the circle" means. Given a circle of area 1, yes, there also does exist a square also of area 1. That is not a problem. The problem is that from a line segment of length equal to the radius (or equivalently the diameter) of such a circle, it is not possible only using ruler and compass to construct a line segment to make a side of a square of the same area as the circle.

The claim in your old book does not make immediate sense. It is true that if you are given a line segment of unit length, then you can quite obviously construct a square of unit area. But having been additionally given a circle of unit area would not be helpful in any way to do it.

Short and sweet.

Nothing more that needs adding here. +1

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.