Jump to content

Dead end in radical simplification?

Featured Replies

So I'm reviewing my rules of radicals prior to teaching it to students, and found out I'm a little rusty on them.

Suppose you hit an answer that ends with a prime number as your radicand. Provided you used mathematically valid reasoning to get there, does this prime-number radicand now suggest that you arrived at the most simplified form, or are there "dead ends" distinct from the right answer?

It doesn't have to be prime- as long as a number is not a perfect square or divisible by a perfect square,  you cannot continue.  For example to simplify the square root of 216, I can observe 216= 2*2*2*3*3*3= 2^3 3^3 (that's its "prime factorization").   Since I want the square root, I look for squares- powers of 2: (2*2)(2)(3*3)(3)= 4(2)(9)(3). "4" and "9" are "perfect squares", 2 squared and 3 squared.  [math]\sqrt{216}= \sqrt{4(9)(2)(3)= \sqrt{4}\sqt{9}\sqrt{2(3)}= 2(3)\sqrt{6}= 6\sqrt{6}[/math].  "6" is not  prime but it is not a perfect square either.  

Notice that 2*2*2= 8 and 3*3*3= 27 are "perfect cubes", $2^3$ and $3^3$ so its cube root: [math]\sqrt[3]{216}=  \sqrt[3]{2^3(3^3}= 2(3)= 6[/math].

Edited by Country Boy

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.