Jump to content

What is the minimal dimension of a complex realising a group representation?

Featured Replies

This question is inspired by one question, which was about representations that can be realised homologically by an action on a graph (i.e., a 1-dimensional complex).

Many interesting integral representations of groups arise via homology from a group acting on a simplicial complex that is homotopy equivalent to a wedge of spheres. A classical example is the action of groups of Lie type on spherical buildings. On homology this gives an integral form of the Steinberg representation.

One may ask if there exists a complex of lower dimension than the Tits building that realises the (integral) Steinberg representation in this way. I am guessing that the answer is No, but how to prove it?

More generally, given an integral G-representation that can be realised as the homology of a spherical complex with an action of G, is there an effective lower bound on the dimension of such a complex? One obvious lower bound is given by the minimal length of a resolution by permutation representations. Is this something that has been studied?

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.