Jump to content

Photon Interaction:

Featured Replies

https://phys.org/news/2017-08-atlas-evidence-light-by-light.html

ATLAS observes direct evidence of light-by-light scattering:

August 15, 2017 by Katarina Anthony

 

Physicists from the ATLAS experiment at CERN have found the first direct evidence of high energy light-by-light scattering, a very rare process in which two photons – particles of light – interact and change direction. The result, published today in Nature Physics, confirms one of the oldest predictions of quantum electrodynamics (QED).

"This is a milestone result: the first direct evidence of light interacting with itself at high energy," says Dan Tovey(University of Sheffield), ATLAS Physics Coordinator. "This phenomenon is impossible in classical theories of electromagnetism; hence this result provides a sensitive test of our understanding of QED, the quantum theory of electromagnetism."


Read more at: https://phys.org/news/2017-08-atlas-evidence-light-by-light.html#jCp

http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys4208.html?foxtrotcallback=true

Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC

 

Abstract:

Light-by-light scattering (γγ right arrow γγ) is a quantum-mechanical process that is forbidden in the classical theory of electrodynamics. This reaction is accessible at the Large Hadron Collider thanks to the large electromagnetic field strengths generated by ultra-relativistic colliding lead ions. Using 480μb−1 of lead–lead collision data recorded at a centre-of-mass energy per nucleon pair of 5.02 TeV by the ATLAS detector, here we report evidence for light-by-light scattering. A total of 13 candidate events were observed with an expected background of 2.6 ± 0.7 events. After background subtraction and analysis corrections, the fiducial cross-section of the process Pb + Pb (γγ) right arrow Pb() +  Pb()γγ, for photon transverse energy ET > 3GeV, photon absolute pseudorapidity |η| < 2.4, diphoton invariant mass greater than 6 GeV, diphoton transverse momentum lower than 2GeV and diphoton acoplanarity below 0.01, is measured to be 70 ± 24 (stat.) ± 17 (syst.) nb, which is in agreement with the standard model predictions.

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.