Q-reeus

Senior Members
  • Content Count

    83
  • Joined

  • Last visited

Community Reputation

0 Neutral

About Q-reeus

  • Rank
    Meson

Profile Information

  • Favorite Area of Science
    Physics

Recent Profile Visitors

The recent visitors block is disabled and is not being shown to other users.

  1. Q-reeus

    Particle in a Box

    I just noticed this post from a casual random read. It's wrong. Squeezing down a cavity with implicitly notionally perfectly reflecting walls means work is being done against radiation pressure that naturally resists any shrinkage. Adiabatic process. This in turn MUST result in an increase in photon energy - if net system conservation of energy is to be maintained. The resolution fairly obviously involves that shrinkage requires an initial inward acceleration of wall motions. Relative wall-photon momentum exchange therefore increases over time and that implies an increase in (center-of-system-energy) photon frequency. Invoking photon absorption as 'resolution' is an appeal to material properties (finite conductivity) which cannot be fundamental to the basic physics involved. [PS: But there is still the need to explain photon energy increase during a more-or-less constant inward wall speed phase. One cannot appeal to an increase in per-impact bullet-like photon-wall momentum exchange. Only to a change in the overall cavity mode pattern/field intensity. Which would be particularly evident if the notional photon wavelength is comparable to cavity size. Especially if it gets down to the limit of a fundamental cavity mode only being present, then the picture basically reduces to one of field/wall-current coupling.] [Even further, it will all depend on precisely HOW the cavity is shrunk for a given mode pattern. For instance, shrinkage along only the E field axis of a rectangular cavity in fundamental TE_010 mode will involve negative work being done on the cavity hence a reduction in field energy. Whereas shrinkage only normal to that axis (against magnetic outward pressure) increases internal field energy.]
  2. Q-reeus

    Vector theory of Gravity

    While it's true VTG hypothesizes fundamental (but evidently quite different) Fermionic components for both the photon and graviton, in each case these 'primitive' and massless Fermions are in VTG always coupled in Fermion-antiFermion pairs to give net spin-1 composite entities (photon and graviton) each obeying spin-1 Bose-Einstein statistics: See point 4 under 2 - Postulates of the vector theory of gravity, and 11.3 - Photon as composite particle. I suppose one rough analogy is Cooper pairing of electrons in superconductors. Also in VTG it's only transverse GW's that are quantized as Fermion-antiFermion pair gravitons. The static/quasi-static 'longitudinal' gravitational field is unquantized i.e. purely classical. Seems odd maybe but Svidzinsky makes the case. But yes any final settlement may be (unfortunately) much further out than what might be reasonably hoped.
  3. Q-reeus

    Vector theory of Gravity

    Thanks for a bit of thumbs up michel123456. My neg points were iirc initially earned in another thread. Whether justly so not worth arguing now that water has flowed under the bridge. Anyone can check back over my posting history if really interested. I don't covet points but find it perplexing as to any presumed criteria and voting rights. Will just use this occasion to emphasize one thing. Regardless of any opinion of VTG, it's viability vs GR will all be decided decisively on just one issue - probably later in 2019. Namely, whether further multi-messenger NS-NS merger events continue to support, or contradict, Svidzinsky & Hillborn's critique as per https://arxiv.org/abs/1804.03520 https://arxiv.org/abs/1812.02604 Until someone of significance, probably from LIGO_Virgo collaboration, provides a detailed direct response, might as well just sit back and wait.
  4. Q-reeus

    Vector theory of Gravity

    OK understood. Best with your further studying there.
  5. Q-reeus

    Vector theory of Gravity

    I'm about ready to just walk away from this place. There is just so little positive feedback, no 'thank you's' for providing useful inputs and links. And a VERY strange pattern of scoring that makes me wonder what the rules are.
  6. Q-reeus

    Vector theory of Gravity

    There is no event horizon because the exponential metric of VTG has no logical room for one! Redshift is not being 'suppressed' at all in VTG. It's naturally there and only in the entirely unphysical limit as r -> 0 would redshift approach infinite value, unlike the pathological GR Schwarzschild solution where it happens at r = 2M. According to Matt Visser et. al., an exponential metric has an inbuilt fail-safe feature that amounts to it being a 'traversible wormhole' with maximum curvature at r = M. I gave the link in Q3 back in my first post here: https://www.scienceforums.net/topic/117068-vector-theory-of-gravity/?do=findComment&comment=1081799 If one really wants a straightforward, first-principles rigorous derivation of why exponential redshift is THE correct form, take a look at Appendix A here: https://arxiv.org/abs/1606.01417
  7. Q-reeus

    Vector theory of Gravity

    Highlighted are the only words that matter in that rambling and disjointly worded piece. Since Svidzinsky's theory is in your mind so below par, why the continued aggressive posting? Show your disdain by ignoring VTG. Give this thread a rest.
  8. Q-reeus

    Vector theory of Gravity

    Nothing useful will come from my tearing your distortions apart one by one. But above red highlighted is a hint of just how wrong you are in general. Kindly inform yourself of the easily verified fact that Svidzinsky's paper necessarily underwent very extensive peer review before being published!
  9. Q-reeus

    Vector theory of Gravity

    Well if some mathematically challenged GR devotee-enthusiast can't personally poke an actual hole in VTG, why not do some shotgun emailing with the hope of netting at least one presumably GR expert figure, who actually replies and encouragingly suggests a hole or two are sort of there for real? Of course if said GR expert has been given a distorted picture (VERY likely!) of what unnamed 'anti-GR protagonist' (me) is actually claiming about VTG vs GR, there is a double issue at stake. But let's initially assume said GW expert's response is based on an accurately pitched query. Itemizing: 1: "If your forum member thinks this paper means GR is dead, they are either lying or don’t understand the paper." That the respondent was accurately informed of my true position is right there severely in doubt. 2: "The paper presents an alternative gravity model known as a “background independent” model. These kinds of models have been studied for decades, usually in the hopes that they might provide some way to quantum theory. Nothing particularly new here." What?! GR itself is THE quintessential example of a background independent theory! VTG is actually best characterized as a fixed prior geometry metric theory. And which has an effective background independence. 3: "The author of the paper states explicitly that the gravity wave results are consistent with the predictions of GR, and points out that his model is also consistent with the data." Half true. Consistent with GR wrt e.g. the gross energy-loss and perihelion advance of an in-spiraling binary e.g. the famous Hulse-Taylor results. And with all but perhaps the final moments of detected merger event waveforms. Dramatically different wrt GW character, polarizations, and angular distribution patterns for amplitude/intensity. 4: "In short, the paper doesn’t say GR is wrong. It actually says its right, and this model could also be right." Again, half true at best. Certain gross features of cosmological structure are equivalent e.g. FLRW metric, but in certain other respects there are fundamental differences. For instance how to naturally account for initial inflationary phase, and presently observed accelerated expansion are novel features of VTG. 5: "It also doesn’t say black holes don’t exist, but instead claims that black holes wouldn’t have an event horizon. They would have an apparent horizon, which is basically an event horizon (except for really technical differences I won’t go into)." Huh? An event horizon is THE distinguishing characteristic of a BH! VTG's exponential metric contrasts sharply with GR's Schwarzschild metric. But only 'close up'. No horizons of any kind exist in VTG. Which is perfectly consistent with a VTG quiescent 'BH imitator' looking very black. 6: "The paper in no way makes GR dead, nor does it make the gravitational wave results invalid." This comes full circle - back to point 1 above! I can only hope the respondent's mistakes were owing to a hurried skimming of Svidzinsky's paper. Email campaigns can be risky. Point taken that vectors can have a much more general nature than that relevant to the physical description of Svidzinsky's VTG. You want expert input then why not do as I suggested and contact Svidzinky directly? His university webpage with contact details shown there: http://iqse.tamu.edu/faculty.php?uname=asvidzinsky
  10. Q-reeus

    Vector theory of Gravity

    LISA more sensitive - in it's own bandwidth of operation? Well obviously. Apples and oranges again. If on the other hand you are again insisting on applying that arcane third criteria for sensitivity while excluding the other two, that's your choice. The remainder of your post there is unfortunately too confused to be worth further replying to. In essence I sense an unwillingness to concede when proven wrong earlier on several quite mistaken and/or totally irrelevant claims. First, please note I didn't carte blanche tar everyone with the same brush. Second, your own words here seem to be encouraging further negative scoring! Go check the continued hostility from one poster here in particular, who keeps up a barrage of negative commentary yet without incurring any negative scoring on his part. Interesting - no? Now, wrt your 'axioms' issues, on checking back to your first post here, I note you stated the following: "I was particularly interested in his distinction between 'vector' and 'tensor' (midway down the abstract) so my first task is to find out what he means by this, as tensors are technically vectors but only some vectors are tensors and GR relies on this." That has it backwards - vectors are a rank 1 subset of tensors. I note on p2 here you complained: "So no response to my vector field question then, and we still have to go offsite to read any replies?" But I found no earlier specific question just a vague appeal for discussion on it. If the well structured manuscript itself is not sufficiently clear for your needs, consider emailing the author directly for further expert clarification. I'm a layman btw not claiming expert understanding of it's content.
  11. Q-reeus

    Vector theory of Gravity

    I knew your understanding back there was quite wrong, but had to search around to find simple formulae clearly proving it. Check out the expression for energy transport rate (i.e. power density) for a plane monochromatic GW under 'Energy transport' here: http://www.tapir.caltech.edu/%7Eteviet/Waves/gwave_details.html Clearly no dependency on frequency, just ~ h^2. In complete analogy to the dependence on square of E field for power density of a plane monochromatic EM wave owing to an electric quadrupole oscillator. For instance compare eqn (76) to (77) p22 here: www.phys.lsu.edu/~jarrell/COURSES/ELECTRODYNAMICS/Chap9/chap9.pdf No unphysical f^2 factor tacked on there either. (That power always goes as E^2 or H^2 for an EM wave is independent of source multipole moment) So what GW 'power density' is it that varies as f^2h^2? I don't particularly care since it has zilch to do with what actually matters re detection - strain amplitude. However because it is for whatever arcane reason actually sometimes used as a 3rd 'measure of detector sensitivity', one can guess it refers to a hypothetical 'accessible power density'. Based on some peculiar criteria evidently of some academic interest. Here is a nice site with a calculator to compare the two actually useful, non-misleading sensitivity criteria: http://gwplotter.com/ Last part is wrong - see above. And what is the point in trying to compare sensitivity of one detector way outside its design bandwidth with another one in the middle of its bandwidth? What does the Planck relation between energy and frequency for a single photon have to do with power density in classical unquantized GW's? Nothing. They are unrelated quantities. Random stabs are not making you look good. See above. Irrelevant comparisons are just that - irrelevant. Don't distort my position! Which has consistently been here and elsewhere that Svidzinsky's VTG lists a range of potential advantages compared to GR or similar alternatives, but that the crucial decider will be nature. The still unresolved issue of actual GW mode type. I jumped in here to a thread now vacated by the OP, to provide useful links to articles not previously covered. A waste of time in hindsight given the continued almost universal negativity in response. So I learn about how it is to be even slightly non-mainstream at ScienceForums.net the hard way. I'm not comfortable with everything Svidzinsky advocates - his rather peculiar NS EOS that supposedly allows much larger than usual masses being one. Anyway, try searching for 'evidence of ring down echoes in black hole merger events' or similar. There are papers out there claiming GR is already in trouble because the detailed merger waveforms hint against pure BH-BH mergers. Given your own slew of mistaken and/or misdirected notions here, I have little faith in your lack of faith.
  12. Q-reeus

    Vector theory of Gravity

    Actually I don't think you do. Or certainly don't care to present it accurately if you do know it. Forget what you were told earlier. LISA will be less sensitive not more, and will likely add little more than a stamp collecting catalog of 'SMBH' merger events. The crucial confirmation of either tensor or vector GW's will almost certainly have been long settled by the time it gets up and running. There is NO reference, direct or indirect, to Svidzinsky's VTG in the article proper. so what are you talking about? Never mind, there is just a single reference, in the comments: https://www.quantamagazine.org/troubled-times-for-alternatives-to-einsteins-theory-of-gravity-20180430/#comment-3905481088
  13. Q-reeus

    Vector theory of Gravity

    Without till now ever stating that. So now revealed as a personal made up term of a quasi-generic nature. Learn to distinguish between an assertion - as made above - and a proven established statement. NONE in respect of what I wrote last post. But feel free to dredge up an exception (in the technical literature) I'm not aware of. Need I point out nothing in that article has 'brutally and pitilessly murdered' Svidzinsky's Vector Theory of Gravity? Evidently so.
  14. Q-reeus

    Vector theory of Gravity

    This situation is different for one reason in particular. Svidzinsky and Hilborn have questioned the very basis of how to properly analyze GW detections: https://arxiv.org/abs/1812.02604 Such a serious challenge surely demands a spirited response. Not silence. You refer often to a 'GV4'. Maybe confusion with Carver Mead's G4v: https://arxiv.org/abs/1503.04866 Which shares features with and may be styled a rudimentary contemporary of Svidzinsky's Vector Theory of Gravity. But a web search reveals no such animal as 'GV4' gravity.
  15. Q-reeus

    Vector theory of Gravity

    Every objection there has been comprehensively dealt with in either the main published article, or subsequently in the updated arXiv article challenging validity of LIGO_Virgo analysis of NS-NS merger event GW170817. I find it telling that afaik no spokesperson(s) for LIGO_Virgo team have to date publicly responded to that challenge. Which imo is extraordinary.