
Posts
340 
Joined

Last visited
Content Type
Profiles
Forums
Events
Everything posted by AbstractDreamer

Cosmological Redshift and metric expansion
AbstractDreamer replied to AbstractDreamer's topic in Astronomy and Cosmology
Thank you all for being really specific and pedantic in your wordings. I genuinely need this to help understand with more clarity as I know words are a poor substitute for maths. I will take some time to absorb all this so I can pose questions that make more sense in terms of real physics and mathematics. 
Cosmological Redshift and metric expansion
AbstractDreamer replied to AbstractDreamer's topic in Astronomy and Cosmology
Right. But if you had an FLRW universe devoid of energy momentum, it would still be a valid solution for that universe, if energy momentum could exist. It just has zero value at the start and at least until the moment of observation. Sure, that universe would look different to their observers than our universe looks to us. And sure it probably wouldn't be a solution their would come up with as there is nothing in their universe that would cause curvature, so why would they have a solution that permits it. But then they could go looking for signs of energy momentum to validate their FLRW solution of a universe that started and still has zero energy momentum. I don't understand how the cause of spacetime expansion is dependent on energy momentum. If anything, they are opposing "forces". I understand how observationally the measurement of spacetime expansion, and the evolution of OUR universe under FLRW is modulated by energy momentum, but the actual mechanic of spacetime expansion  dark energy  does not depend on energy momentum as far as I can understand. And I accept that even light has energy momentum, so the very presence of redshfted light means energy momentum is present and some degree of nonflat geometry. Going back to the thought experiment, If dark energy could cause both spatial and temporal expansion, then, in a spacetime geometry of net zero energymomentum (Minkowski spacetime?) and over a short period of constant scale factor, could you distinguish how much of the redshift in the wavelength of photons is due to spatial expansion and how much is due to temporal expansion? 
Cosmological Redshift and metric expansion
AbstractDreamer replied to AbstractDreamer's topic in Astronomy and Cosmology
Is FLRW spacetime not flat because of curvature caused by mass, and the scale factor of expansion that changes over time? If we zero the nonflatness effect of gravity AND zero the nonflatness effect of the scale factor, is FLRW spacetime otherwise flat? In other words, if we take a period of time that is very small cosmologically, say 1 day, where the scale factor of expansion is constant; and if we remove all gravity from the universe. Would then the FLRW and the spatial expansion it describes be over a flat geometry? 
Cosmological Redshift and metric expansion
AbstractDreamer replied to AbstractDreamer's topic in Astronomy and Cosmology
How small is miniscule? Why does a globally flat geometry forbid an expansion of the temporal metric? 
Cosmological Redshift and metric expansion
AbstractDreamer replied to AbstractDreamer's topic in Astronomy and Cosmology
I do accept that the FLRW does include a time component. Perhaps I'm using the wrong words when I accuse the FLRW of having no temporal component. What I mean to say is FLRW has a temporal component that has a net zero value, and consequently all observed expansion must be spatial according to EFE. But where is the direct evidence that Cosmological spacetime is absolutely flat in the absence of a gravitational field, even if there is no evidence of local spacetime expansion, neither spatial nor temporal? The logical fallacy here is: Because gravity curves spacetime, local spacetime is not flat, therefore (fallacy) in the absence of gravity, nonlocal spacetime is also flat. If gravity can curve spacetime locally, why must spacetime be flat cosmologically? 
Cosmological Redshift and metric expansion
AbstractDreamer replied to AbstractDreamer's topic in Astronomy and Cosmology
I have been trying to understand this for some time but still fail. A flat spacetime metric cannot be obtained by coordinate transformation from an nonflat expanding spaceonly metric? How does this refute an expanding timeonly metric? But if there was a temporal component, could it be observed as distinct from the spatial component? If you cant observe a distinction, then just as you can argue that all observational evidence says you only need a spatial component, the position that none of the observational evidence refute a temporally expanding component is equally as strong. And the important thing is that EFE suggests BOTH components form a single manifold. There's no observational reason why the temporal component is zero in the case of expansion. The only reason, as far as I can tell, is simplicity of calculations  which is a good reason but not one based on observation. Thought experiment: Say we observe two redshift galaxies at z=5. Let's say one galaxy is only spatially expanding away from us, and the other is both spatially and temporally expanding away from us, and all three locations (two galaxies and the observer) are on a spacetime plane that has observably flat geometry. Could you distinguish which is which? I accept the argument why we would want to complicate the calculations. Like the geocentric theory of the solar system is valid if you choose that coordinate system, but it makes the calculations impossibly complicated, versus the Copernican model which simplifies things a lot. My question is what might we be missing when we simplify them. Just like the equivalence principle, there's no difference between being in a gravitational field or in a rocket that is being accelerated. For local calculation purposes they are physically equivalent. But there is a materialistic difference. An accelerated rocket is a far less stable environment than a gravitational field. Maybe locally there is no physical consequence of calculations that assume zero temporal expansion. But maybe in the bigger picture, or some grander theory there is a difference. Could the Crisis in Cosmology be partly due to the lambaCDM modelling both spacetime geometry as too "flat" and expansion as spatialonly? 
Cosmological Redshift and metric expansion
AbstractDreamer replied to AbstractDreamer's topic in Astronomy and Cosmology
But homogeneity and isotropy in the cosmological principle is an assumption of spatial distribution of energy momentum. Choosing time coordinates for a solution to EFE such as FLRW, is an assumption of temporal distribution. Isotropy of time would mean there is no preferred direction of time, but all our observations of time show it does have a preferred direction  time goes forwards. Observationally, the universe is temporally anisotropic. Homogeneity of time would mean there is no preferred moment in time. The universe looks different at different coordinates in time  it was pure plasma very early on, and now it isn't. Similarly, observationally, the universe is temporally inhomogeneous. Right, but FLRW is a particular solution that inherently forbids temporal expansion because of the choice of coordinates. Therefore it cannot be used to justify why all expansion is spatial. My position is NOT that the universe is NOT expanding. My position is why all the expansion is attributed to spatial expansion and not temporal expansion. I suspect all the other evidence that supports metric expansion does not directly refute temporal expansion. Cosmological redshift does not refute temporal expansion. But if we use the same FLRW solution to interpret the evidence, then our conclusion will be constrained to the assumptions of the solution we chose. It is the solution that assumes all expansion is spatial, not the evidence. I am really interested in distance measures in cosmology. In particular the margins of error, models and assumptions when interpreting observations. But will ask those questions another day. This is piqued my interest. No transformation that allows time to expand and not space. Why does expansion have to be at least in part spatial? Why can expansion have no temporal component? What does this physically mean? 
Cosmological Redshift and metric expansion
AbstractDreamer replied to AbstractDreamer's topic in Astronomy and Cosmology
I don't know the maths at all. But it seems fundamental to me that if you make a choice, you instantiate something. When something is instanced, things are set and other settings are rejected. When you reject other settings, there are fundamental consequences. These consequences are the assumptions. If time coordinates are chosen such that earthbound clocks are comoving with the cosmological medium, that has consequences. The very choosing of those coordinate forbids a nonrelative (nongravitational) time dilation effect. That is why FLRW metric forbids temporal redshift, because it was chosen to be orientated that way. Am I wrong? The observational evidence in this case is dubious solely because of the narrow range of observation relative to the field of study. We've never made an observation of cosmological redshift from outside of our solar solar system, let alone from a distance where spaceexpansion or temporalexpansion is significant. We've never made an observation of cosmological redshift from a time in the past or the future, where spatial or temporal expansion is significant. I'm not saying any of this is possible. I'm just saying our sample range of observations is far too narrow to be confident to say our evidence is significant. We've taken a handful of stones from a beach, and assumed all beaches must be stoney. As for where would we get time dilation? Where do we get spaceexpansion? Dark energy? We can make up anything to fit the narrative. Advantage for what purpose? Simplicity and accuracy to fit other observations are similarly limited in their scope? This again falls foul of confirmation bias. BTW, someone anonymous is downvoting all my threads. Not that I care about reputation, but being anonymous and not saying why I'm wrong feels like im being victimised and rather abusive. 
Cosmological Redshift and metric expansion
AbstractDreamer replied to AbstractDreamer's topic in Astronomy and Cosmology
So by choosing such time coordinates, it also inherits the assumption that the cosmological medium of time is moving uniformly, everywhere and always (an Earth bound clock must tick at the same rate as the rest of the universe now and in the past and in the future). And yet, our observations are bounded to a infinitesimally small location of the universe (observations from our solar system compared to the size of the universe), and a very small period of time (150/13billion years). There is a problem here I cant quite put into words, so I will use bad analogies. Its like everyone being colourblind and believing the universe is shades of grey. You can observe light wavelengths, but you cant observe the colour blue. It has no physical meaning. Its like believing gravity is a force before GR modelled spacetime curvature. Everything must fit what we observe (of course, to be empirically tested), but we don't acknowledge enough how severe our observations are restricted/limited. In many areas of science, where and when you perform an observation has no bearing on what is being tested. In THIS particular case of redshift, when and where you perform an observation is of paramount significance... and we are straightjacketed into observations from our solar system location (where ever it is in the universe), and observations from our moment in time (a few hundred years). The limitations of our observations are significant relative to the field of study. But spaceexpansion IS a theory, as is the more absurd temporalexpansion. The premise for the theories is from choice of coordinates. Is this saying there is no transformation that will allow only time to expand and not space? What is the meaningful consequence of this? 
Space Expansion, wavelength and energy density
AbstractDreamer replied to AbstractDreamer's topic in Astronomy and Cosmology
Anyone else have any comments? 
Cosmological Redshift and metric expansion
AbstractDreamer replied to AbstractDreamer's topic in Astronomy and Cosmology
I not going to pretend to follow the math. Neither do I want to interrupt where the thread has gone, but I want to bring it back layman speak on my level. Earlier in this thread I did already mention that the FLRW metric is "orientated" where time does not expand with space. I had suspected that a transformation could orientate it differently such that time does expand with space. And I suspected at the other extreme we can have a solution where space does not expand at all and only time does. In another thread I asked about a variable "metric of time", and the "rate of flow of time", which was very difficult to conceptualise and it sort of ended there. My position is that l still maintain the validity of the interpretation that: nonrelative time expansion/contraction is indistinguishable from space expansion/contraction. When you look up cosmological redshift in wiki there is no "Temporal Redshift" type. That is, redshift caused by an expanding temporal metric. It doesn't exist. Not a single reference, no studies, no papers. Why? Just because its too complex and abstract compared to spaceexpansiononly theory? I don't believe complexity is a reason for the entire physics community to shy away from such an interpretation. If it is valid, and noone has researched into temporal redshift, it can only be because "space expansion" and its universal acceptance has blinded us to the truth that is only one alternative of other interpretations. 114 replies

1

Cosmological Redshift and metric expansion
AbstractDreamer replied to AbstractDreamer's topic in Astronomy and Cosmology
But why does the FLRW solution assume that "only the spatial part of the metric is nontrivial and carries an expansion factor, there is no time dilation in this cosmological spacetime." On what basis and evidence independent of this assumption do we have that this disposition is true. Why is it only the spatial metric and not the temporal metric that expands in the case of cosmological scale? The FLRW solution contains within it the Hubble constant. The constant describes adiabatic space expansion. We cant then use the FLRW solution to justify that space expansion exists, because it is a solution that requires it to exist! Newton's law of gravitation solution does not prove that gravity is force. It is a solution that requires a force he called gravity. "The Friedmann–Lemaître–Robertson–Walker metric (FLRW; /ˈfriːdmən ləˈmɛtrə ... /) is a metric based on the exact solution of the Einstein field equations of general relativity. The metric describes a homogeneous, isotropic, expanding (or otherwise, contracting) universe that is pathconnected, but not necessarily simply connected" from Wiki It is describing an expanding universe. In other words, as it's premises it preassumes that the universe is homogenous, isotropic and expanding. I'm not denying that any observations that subsequently fit the model certainly support the assumptions. And I'm in no way suggesting there is no space expansion at all. But what about observations that don't fit the model such as data from the JWST? The lambaCDM model also uses the Hubble constant presumably derived from the FLRW metric. Again, it premises that space expands. A derivation cannot prove a premise. A geocentric theory does not prove the sun circles around the earth, because it already assumes it does. We can also add arbitrary complex formulas to make the geocentrism fit new conflicting data such as retrograde precession, just as we can add new mechanisms such as dark energy to make an expanding universe fit redshift and other observations. CMBR polarisation suggests some space expansion occurred. And we can arbitrarily parametise a formula to fit exactly what we observe and fit how we understand things work. But making everything fit comes with the danger of confirmation bias, especially when the fit is arbitrary. If there are any other mechanisms that we don't understand or haven't yet identified, then making things fit will with certainty blind us to those mechanisms. Gravitation waves being stretched also fits an assumption of space expansion in the same way as redshifted EM spectra, but the same argument stands. Why can some unknown from of time dilation not also contribute to gravitation wave stretching  why must all stretching of gravitational waves be solely caused by space expansion, other than it nicely fits the FLRW metric which is already orientated to only the spatial metric expanding. Largescale structure patterns tell us of space expansion vs gravity vs time. Most theories support the idea of a "force" (dark energy) that counteracts gravity to give us the patterns we see today. Again we can arbitrarily parametise a formula to fit what we observe with how we understand things, which in this case is: something (dark energy) is working against gravity, and it does so at different rates depending on when (time). But why is all dark energy due to space expansion? Just because we have a solution that takes the position of "only the spatial part of the metric carries an expansion factor"? So if we are using largescale structure as evidence for only space expansion, that is a fallacy of circular logic: "Given a solution where only the space metric expands (FLRW), then... ...only space expands" Well of course! It's already given! I have no response regarding acoustic baryonic oscillations and BB nucleosynthesis right now as I have no understanding at all on those topics. But evidence for gravity as a force does not refute gravity as spacetime curvature. In the same way, observations that fit space expansion does not specifically refute other mechanisms. On the other hand there is quite a lot of refuting evidence against Lamda CDM especially since JWST. Again, we go back to Hubble's law and cosmological redshift, as the only empirical data source that is not derived from the FLRW premise that only the spatial metric expands, or derived from a parametisation of that metric Why is there a 1:1 causal link between redshift and space expansion and 1:0 (zero) causal link with redshift and time dilation, when we know it is a single spacetime manifold? What empirical evidence did Hubble and Lemaitre have in 1920 to believe only space expansion and not time dilation causes redshift. Why does the FLWR metric choose that only the spatial metric and not the temporal metric expands? 
Cosmological Redshift and metric expansion
AbstractDreamer replied to AbstractDreamer's topic in Astronomy and Cosmology
Why would we expect to see blueshifting? We theorised space expansion from the discovery of cosmological redshift. Not the other way around. If cosmological redshift had some other cause, it wouldn't change what we measure at all. It would change our theory. According the HubbleLemaitre law, yes it is correlated to distance. But why does the HubbleLemaitre law attribute 100% of observable cosmological redshift to space expansion, and 0% attributed to cosmological time dilation? Where is the evidence that cosmological time dilation does not exist? Before cosmological redshift, there was no such thing as either space expansion or cosmological time dilation. After we discovered cosmological redshift, space expansion was accepted/invented/theorised, but why not "cosmological time dilation"? As far as I have read, redshift IS the only source data point. Space expansion was theorised from discovering the redshift. All other data points derive from the theory. We can't use a derivation to prove a premise. Hubbles law: v = H0D Why can't it be v = H0DPDT Where T is the proper time difference and PD is a constant of proportionality of T which can change over relative proper distance. In the Hubble=Lemaitre law, T simply has the value of zero. So yes the further away something is, the faster it is receding, necessarily reaching superluminal velocities above certain distances. If T has a non zero then it could be that the further away something is, the faster or slower time is ticking where they are relative to the observer, instead of receding faster, potentially never breaking the limit of c, but not necessarily so. 
Cosmological Redshift and metric expansion
AbstractDreamer replied to AbstractDreamer's topic in Astronomy and Cosmology
My point is not about refuting kinematic interpretation of redshift. A phenomenon of space expanding would certainly cause the cosmological redshift observations that we measure. This does not mean cosmological redshift observations are entirely and completely explained by space expansion. If we measure a redshift of 3, why must the entirety of that redshift be caused by space expansion and nothing else? What evidence do we have that nothing else causes cosmological redshift? 
Cosmological Redshift and metric expansion
AbstractDreamer replied to AbstractDreamer's topic in Astronomy and Cosmology
I'm not entirely certain what I mean by volume. I have two thoughts. Firstly, it is the "space expansion", whatever "space" or "volume" it is that is expanding. So I'm guessing the kinematic interpretation of redshift suggests only a 3volumes expansion, and the (at least partly) gravitational interpretation suggests a 4volume expansion. But the accepted interpretation is kinematic only  a 3volume expansion? Secondly it is about temperature. Mordred mentioned "increasing volume": I don't know what he means by volume here. I guess its 3volume space. 
Space Expansion, wavelength and energy density
AbstractDreamer replied to AbstractDreamer's topic in Astronomy and Cosmology
So rulers do not expand. Great. So what? 7 replies

2

Space Expansion, wavelength and energy density
AbstractDreamer replied to AbstractDreamer's topic in Astronomy and Cosmology
1 for irrelevance. You quoted half a line and took it out of context to troll a response that has no context to my original text, with no intent other than to derail my topic with graffiti. I mean if you read my post you'd realise the expansion is present in the wavelength of a photon. And if the photon wavelength is the ruler, and the wavelength has expanded, then the ruler has expanded. 7 replies

2

Cosmological Redshift and metric expansion
AbstractDreamer replied to AbstractDreamer's topic in Astronomy and Cosmology
Exactly you're wrong and just trolling. 114 replies

3

Cosmological Redshift and metric expansion
AbstractDreamer replied to AbstractDreamer's topic in Astronomy and Cosmology
Define "closer" 
Cosmological Redshift and metric expansion
AbstractDreamer replied to AbstractDreamer's topic in Astronomy and Cosmology
Neither. As neither axes have any values other than zero. In this manifold, zero is the only value that can be taken. Everything has the value zero. 
How exactly does the expansion of space result in the lengthening of the wavelength of a photon? So you have a tiny photon in superposition with regards to its position and momentum travelling through spacetime for 13 billion years. An excitation propagating through the EM quantum field. Presumably the field is stretched by expansion, but the photon at any moment is a point. So how do the properties of the photon get stretched when it is just a point in the field? Unless the photon isnt a point, and is a line? And if it is a line, then space expansion doesnt occur at any instant but rather over a period? If a volume experiences space expansion, how do you measure the increase in volume from inside the volume? I'm guessing you cant because any ruler you have will expand with the volume. I'm guessing from inside the volume, there is no measurable increase in volume. If a volume experiences space expansion, how do you measure the increase in volume from outside the volume? Assuming, for any observer outside the volume, in order to be able to measure a redshifted photon that exceeds the speed of light you have to be sufficiently far away in spacetime such that the observer and the volume do not share a valid local reference frame. If there is no valid local frame of reference, how do we measure its volume? If there is no increase in volume locally, and you cannot measure the volume from outside, how does space expansion increase volume and result in lower average energy density?

Cosmological Redshift and metric expansion
AbstractDreamer replied to AbstractDreamer's topic in Astronomy and Cosmology
You're very wrong. Coordinates are sufficient for comparison. 2<3. Two is less than Three. You don't need any units of meters, seconds, degrees or apples, square roots or coloured pixels. Wrong again. The number of coloured pixels are the same in both, even if you use a metric of number of coloured pixels. Count them. There are 4 pixels in both. The difference between the pixels in both vertical and horiztonal direction are also the same. There are two pixels in the vertical direction for both, and 2 pixels in the horizontal directions for both. Your mistake is assuming the grid lines have significance. They dont. Only the numbers on the axes have meaning. Labelling with units is irrelevant. Which number is bigger? The number 2 or the number 3? 
Cosmological Redshift and metric expansion
AbstractDreamer replied to AbstractDreamer's topic in Astronomy and Cosmology
I'm asking which has bigger volume, not how big their volumes are according to some metric. You don't need a metric to compare volumes, if the coordinate systems are the same, which they are. The point is stretching axes doesn't change magnitude whatever metric you are using, and so space expansion doesn't change volume. Both objects are 2x2 square units, and internally consistent with that shape and magnitude  no matter how much an observer stretches the axes, inside the polygon you will never notice any difference. If you are arguing that space expansion increases volume, then you are saying the square has larger volume than the rectangle, because I changed the magnification and zoomed in significantly on the xaxis. So then your position is that the volume of each green polygon is a property of the observer and not the polygon. Space does not have to expand at all. That's the whole point of that paper. Cosmological redshift does not have to interpreted as due kinematic Doppler shift. 
Cosmological Redshift and metric expansion
AbstractDreamer replied to AbstractDreamer's topic in Astronomy and Cosmology

Cosmological Redshift and metric expansion
AbstractDreamer replied to AbstractDreamer's topic in Astronomy and Cosmology
Wonderful answer thank you! I feel somewhat vindicated with posting this thread. This paper seems to answer my questions, at least to my level of comprehension. I disagree that they conclude Doppler redshift is more accurate than gravitation redshift. My understanding is that they conclude Doppler redshift interpretation is more natural. And by natural I assume they mean because its more simplistic to describe. "Within this frame, you would, by the equivalence principle, interpret their results as a Doppler shift. In so doing, you would be choosing to regard the Doppler family as the natural one, because this family is the one whose behavior is simplest to describe in your chosen frame" page 8 line 4 from the paper above. At this point, I have an issue with the free fall requirements of the Doppler shift model. That is, no gravitational difference between an observer and its neighbour along the path of the radiation, where any difference in observed frequency can be attributed as kinematic . Would a passing gravitational wave not break this local inertial frame between a pair of neighbours? Over 13 billions years, its hard to imagine how a photon avoids an encounter with a gravitational wave. On the other hand, a family of observers where each member is at rest relative to its neighbour seems more "natural" to me. That is, any difference in observed frequency of the photon can be attributed to gravitational redshift  a time dilation cause of redshift. More important than this choice of frame, is their conclusion that BOTH interpretations are valid. "There is no “fact of the matter” about the interpretation of the cosmological redshift: what one concludes depends on one’s coordinate system or method of calculation." page 8 line 17 "The common belief that the cosmological redshift can only be explained in terms of the stretching of space is based on conflating the properties of a specific coordinate system with properties of space itself. This confusion is precisely the opposite of the correct frame of mind in which to understand relativity." bit further down This validates my point entirely. The interpretation of cosmological redshift as Dopplershift or gravitational shift is a matter of choice, and not of facts. A choice of your arbitrary orientation of your coordinate system, something which I said even before I knew what I was talking about (or rather less that what I know now which is just marginally above zero). Space expansion is an ARTIFACT of the coordinate system where we CHOOSE zero gravitational causes to cosmological redshift. In other words if you choose to zerolise time dilation causes to cosmological redshift, then space expansion neatly explains superluminal recession speeds. So to address other points of evidence of space expansion as fact rather than choice: But I thought space expansion doesn't increase volume. Unless you are observing the volume from outside using a measurement reference that is independent of such expansion. If a cube 1m3 expands under space expansion, it's still 1m3 because your ruler also expands with the cube. So wouldn't you have to be outside of the universe to claim any part of it increased in volume? Or if you are inside the universe measuring another part of it, how do you know your ruler is not being stretched in order to conclude the volume being observed is increasing? Temperature is measurement of average energy in body/volume right? "Average" meaning over time. Even if space expansion "creates volume", how can we say the temperature decreases due to an increasing volume. Why can we not say "temperature decreases due to a slowing of time" (we are receiving less observables that measure temperature due to time slowing down)? If I measure 10 photons with a fixed energy propagating from a 1m3 volume over 1 second and we agree to calibrate this reading and call it 10 Hotness. If I then tell you I have two more experiments, one where I space expanded the volume to 2m3 the volume and another where I time diluted the volume to half the rate of time. In the space expansion experiment there are now less photons per volume. In the time dilated experiment there are now less photons per time. Both experiments would measure a decrease in temperature to 5 Hotness. But why would we assert that the decrease in temperature is due to only the volume changing? I don't see why time dilation necessarily contradicts BB or steady state. Both of which are conclusions from many other factors besides time dilation. I think its more important to build from the ground up and end up wherever we end up, rather than top down where we want either the BB or a steady state to be a reality and then railroad observations, interpretations and models to fit. Einstein did that when declaring "God does not play dice", and trying to make QM fit his deterministic belief of the universe. Ultimately, there is no evidence that excludes time dilation as a factor in cosmological redshift, either through gravitational time dilation or some other kind of mechanics that result in time dilation. And I don't know why we commonly accept cosmological redshift is fully attributed to kinematic Dopplershift.