Jump to content

is that proof correct

Featured Replies

In proving that :[latex]x\leq y\wedge 0\leq z\Longrightarrow xz\leq yz [/latex] we have the following proof:

 

Let ,:[latex]x\leq y\wedge 0\leq z[/latex] and

let ,[latex]\neg(xz\leq yz) [/latex].......................................................1

But from (1) and using the trichotomy law we have :yz<xz.And using the fact [latex]0\leq z[/latex] we have for 0= z, y0<x0 => 0<0 , a contradiction since ~(0<0)

 

Hence [latex] xz\leq yz[/latex]

  • 10 months later...

No this "proof" is not valid! In particular, the negation of "[math]xz\le yz[/math]" is NOT "[math]xz> yz[/math]" for all values of x, y, z satisfying the conditions. It is that [math]xz> yz[/math] for some such values of x, y, and z.

 

Indeed, you cannot prove this unless you use some property of "inequality" such as "if [math]x\ge 0[/math] and [math]y\ge 0[/math] then [math]xy\ge 0[/math]".

Edited by Country Boy

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.