Jump to content

Eigenvalues of Matrix Sum


Recommended Posts

Hello,

 

I have a linear algebra problem that I need help with.

 

Basically, I need to get the eigenvalues and eigenvectors of several (sometimes tens of thousands) very large matrices (6^n x 6^n, where n>= 3, to be specific). Currently, we are just using MATLAB's eig() function to get them. I am trying to find optimizations for the simulations to cut down on computing time. There are three matrices that we use.

 

H_constant - generated before the loop. Real and symmetric about the diagonal. Does not change after initial calculation.

 

H_location - generated during each iteration. Diagonal.

 

H_final - H_constant + H_location. Therefore, it is also real and symmetric about the diagonal.

 

It is H_final that we need the eigenvalues and eigenvectors of. My theory is that we calculate the eigenvalues and eigenvectors of H_constant (which won't change after the initial calculation) once. We use this result with the eigenvalues of H_location (the diagonal), to get the eigenvalues and eigenvectors of H_final1. This would reduce our computation from tens of thousands of eig() calls to 1 eig() call and tens of thousands of very simple operations. I don't remember enough of my linear algebra to prove such a theory.

 

I hope I was able to explain the problem well enough. I hope someone is able to help me with this problem.

 

Thank you,

 

Vincent

Link to comment
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.