Jump to content

"Headlight" effects in Accretion Disks ?


Widdekind

Recommended Posts

[math]T^4® = \frac{3 G M \dot{M}}{8 \pi \sigma r^3} \left[1 - \sqrt{\frac{R}{r}} \right][/math]

 

[math]C_S^2 \approx \frac{k_B T}{\bar{m}}[/math]

 

[math]v_K^2 \equiv \frac{G M}{r}[/math]

 

[math]\dot{M}_{Edd} \equiv \frac{4 \pi c}{\sigma_T} \bar{m} R[/math]

Defining [math]\dot{M} \equiv \mu \dot{M}_{Edd}[/math], then w.h.t.:

 

[math]\therefore \left(\frac{C_S}{v_K}\right)^8 \approx \mu \left( \frac{k_B}{G M \bar{m}} \right)^3 \left( \frac{3 k_B c R}{2 \sigma \sigma_T} \right) r \left[1 - \sqrt{\frac{R}{r}} \right][/math]

 

[math] \approx 2 \times 10^{-10} \left( \frac{\bar{m}}{m_H} \right)^{-3} \left( \frac{M}{M_{\odot}} \right)^{-3} \left( \frac{R}{R_{\odot}} \right)^2 \mu \left[ x - \sqrt{x} \right][/math]

where we have defined [math]x \equiv r / R[/math]. Taking the eighth-root, w.h.t.:

 

[math]\frac{C_S}{v_K} \approx 0.06 \left( \frac{\bar{m}}{m_H} \right)^{-3/8} \left( \frac{M}{M_{\odot}} \right)^{-3/8} \left( \frac{R}{R_{\odot}} \right)^{1/4} \mu^{1/8} \left[ x - \sqrt{x} \right]^{1/8}[/math]

If we further assume a relativistic accretor, s.t. [math]R = \rho R_S[/math], where [math]R_S \approx 3 \; km[/math] per [math]M_{\odot}[/math], then w.h.t.:

 

[math]\frac{C_S}{v_K} \approx 0.003 \left( \frac{\bar{m}}{m_H} \right)^{-3/8} \left( \frac{M}{M_{\odot}} \right)^{-3/8} \rho^{2/8} \mu^{1/8} \left[ x - \sqrt{x} \right]^{1/8}[/math]

For NS & BH, [math]\rho \approx 3[/math], s.t.:

 

[math]\frac{C_S}{v_K} \approx 0.004 \left( \frac{M}{M_{\odot}} \right)^{-3/8} \left[ x - \sqrt{x} \right]^{1/8}[/math]

even assuming Eddington-rate accretion, of pure H plasma. For a typical NS ([math]M \approx 1.4 M_{\odot}[/math]), w.h.t.:

 

[math]\frac{C_S}{v_K} \approx 0.003 \left[ x - \sqrt{x} \right]^{1/8}[/math]

The fore-going formula only approaches parity, as [math]x \rightarrow 300[/math], at [math]\approx 1000 R_S[/math], or [math]\approx R_{\oplus} \approx R_{WD}[/math]. Inside of that radius, even as [math]v_K \rightarrow c[/math], Accretion Disk temperatures peak around 1-2 KeV << mc2.

 

Does this imply, that inner-disk flows are "cold", Relativistically (and relatively) speaking ? Is this why Accretion Disks are "radiatively inefficient" s.t. "advective cooling (carrying the energy with the flow) dominates" ? As [math]v_K \rightarrow c[/math], even as [math]v_K >> C_S[/math], wouldn't most thermal emission be "headlighted" forward, with the flow ? How, then, would such inner-disk regions radiate ??

 

 

References:

 

Kolb. Extreme Environment Astrophysics.

Chris Done & Marek Gierlinski. Observing the effects of the event horizon in black holes, Mon. Not. R. Astron. Soc. 000, 1–15 (2002).

Link to comment
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.