Jump to content

Eigenvalues and Eigenvectors


hkus10

Recommended Posts

Let L : V>>>V be an invertible linear operator and let lambda be an eigenvalue of L with associated eigenvector x.

a) Show that 1/lambda is an eigenvalue of L^-1 with associated eigenvector x.

For this question, the things I know are that L is onto and one to one. Therefore, how to prove this question?

 

b) state the analogous statement for matrices. What does "state" the analogous statement mean?

 

Thanks

Link to comment
Share on other sites

Let L : V>>>V be an invertible linear operator and let lambda be an eigenvalue of L with associated eigenvector x.

a) Show that 1/lambda is an eigenvalue of L^-1 with associated eigenvector x.

For this question, the things I know are that L is onto and one to one. Therefore, how to prove this question?

 

b) state the analogous statement for matrices. What does "state" the analogous statement mean?

 

Thanks

 

a) You should know a bit more that just that L is 1-1 and onto. What is L(x) ? What is L^-1(L(x)) ?

 

b) Writing it down would be considered "stating" it.

Link to comment
Share on other sites

a) You should know a bit more that just that L is 1-1 and onto. What is L(x) ? What is L^-1(L(x)) ?

 

a) This is what I get let n=lambda.

Since r is an eigenvalue of L, Lx=nx.

Since the transformation is invertible, (L^-1)Lx=(L^-1)nx.

==> Ix=n(L^-1)x, where I=indentity matrix

At this point, I want to divide both sides by r. However, how can I be sure r is not equal to zero?

 

Thanks

Edited by hkus10
Link to comment
Share on other sites

a) This is what I get let n=lambda.

Since r is an eigenvalue of L, Lx=nx.

 

What?? If, as you claim [math]L:V \to V, \ \ x \in V[/math]. then the equation [math]Lx = nx[/math] defines [math] n[/math] as an eigenvalue and [math]x[/math] as its associated eigenvector. Where does [math] r[/math] enter the picture?

 

Since the transformation is invertible, (L^-1)Lx=(L^-1)nx.

 

I have no idea how you got this. Try [math]L^{-1}(L(x)) = x[/math] by the simple fact, as given by you that the transformation is bijective

==> Ix=n(L^-1)x, where I=indentity matrix

 

The identity operator/matrix acting on any vector is the vector itself. How can it be that [math]x = L^{-1}nx?[/math]

 

So, I firmly believe that students should do their own homework, but here is a big hint.

 

Assume that you mis-typed, and meant that

 

[math]Lx = nx[/math] defines the eigenvalues(s) [math] n[/math] for this operator acting on this vector

 

[math]L^{-1}x =rx[/math] defines the eigenvalue(s) [math]r[/math] for this operator acting on the same vector.

 

So, first rearrange each of these 2 equalities, and using any, all or none of the above, find a relation between [math]r[/math] and [math]n[/math] such that your rearrangement (cleanly done by factorization) makes sense.

 

Good luck!

Link to comment
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.