Jump to content

Theorem - Uniform convergence

Featured Replies

1. The problem statement, all variables and given/known data

 

Suppose:

 

[math]f(x)\ and\ f'(x)\ are\ continuous\ for\ all\ x \in R [/math]

 

[math]For\ all\ x \in R\ and\ for\ all\ n \in N[/math]

[math]f_n(x)=n[f(x+\frac{1}{n})-f(x)][/math]

 

[math]Prove\ that\ when\ a,b\ are\ arbitrary,\ f_n(x)\ is\ uniform\ convergent\ in\ [a,b][/math]

 

 

3. The attempt at a solution

 

 

[math]\lim_{n\rightarrow \infty} f_n(x)=\lim_{n\rightarrow \infty} n[f(x+\frac{1}{n})-f(x)] = \lim_{t\rightarrow0} \frac {f(x+t)-f(x)}{t}=f'(x)[/math]

 

[math]\max_{[a,b]}|n[ f(x+\frac{1}{n}) -f(x)]-f'(x)|=|n[ f(x_0+\frac{1}{n}) -f(x_0)]-f'(x_0)|=[/math][math]|\frac {f(x_0+t)-f(x_0)}{t}-f'(x_0)|\rightarrow0[/math]

 

I fear that I miss something terribly important.

*I left out all the little technical details to make things shorter.

Good problem! I'd originally thought you weren't along the right lines, but now I've studied things a little better (and jogged my memory regarding supremums :P) I can see the logic. As far as I can tell, it simply needs tidying up. Here's my version.

 

Since [imath]f_n[/imath] and [imath]f[/imath] are continuous, it follows that [imath]f_n-f[/imath] is continuous on [imath][a,b][/imath], and hence there exists [imath]x_0[/imath] such that

 

[math]\sup_{x\in [a,b]} |f_n(x)-f(x)| = |f_n(x_0)-f(x_0)|[/math].

 

Then,

 

[math]\lim_{n\to\infty} \sup_{x\in [a,b]} |f_n(x)-f(x)| = \lim_{t\to 0} \left| \frac{f(x_0+t) - f(x_0)}{t} - f'(x_0)\right| = 0[/math],

 

so [imath]f_n[/imath] converges uniformly to [imath]f[/imath].

Edited by dave

  • Author

[math]\mbox{f(x) and f'(x) are continuous for all x in R. (*1)} [/math]

 

[math]\mbox {Let a,b in R\ so\ that\ without\ the\ loss\ of\ generality } a<b.[/math]

 

[math]\mbox {Let x in [a,b]. (*2)} [/math]

 

[math]\lim_{n\rightarrow \infty} f_n(x)=\lim_{n\rightarrow \infty} n[f(x+\frac {1} {n})-f(x)]=[/math][math][t_n=1/n]=\lim_{t\rightarrow0} \frac {f(x+t)-f(x)} {t}=f'(x). \ (*3)[/math]

 

[math]\mbox{(*1) and (*2) and (*3) } \Rightarrow\ g(x)=|f_n(x)-f(x)| \mbox{ is continuous for all x in R.\ (*4)}[/math]

 

[math]\mbox{(*2) and (*4)} \Rightarrow\ \mbox {Weierstrass Theorem } \Rightarrow\[/math][math] \exists\ \max_{[a,b]} g(x)=g© \mbox { c in [a,b].\ (*5)} [/math]

 

[math]\mbox {(*5) and (*1) } \Rightarrow\ \forall\ x\in[a,b]\ \Rightarrow\ \sup_{[a,b]}|f_n(x)-f(x)|=|\frac {f(c+t)-f©} {t} -f'©|\rightarrow0[/math]

 

[math]\Rightarrow \mbox { Basic lemma for uniform convergence }[/math][math] \Rightarrow\ f_n(x) \mbox{ is uniform convergent in [a,b], where a,b are arbitrary.} [/math]

 

QED

 

[Edit] "Basic lemma for uniform convergence" is sounds little funny but I'm sure you'll understand what I meant.

[Edit] I'm afraid of having the wrong intuition about uniform convergence, I hope you will be be able to say if I understand the idea from my proof.

[Edit] If only I could prove g(x) is monotonic [such thing is possible?] then my proof would be a lot shorter, using Dini Theorem.

Edited by estro

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.