Jump to content

-i = i [Disproven]

Featured Replies

Hey all,

 

Where am I making a mistake?

 

[math]-i=(-1)\sqrt{-1}=\sqrt{(-1)(-1)(-1)}=\sqrt{-1}=i[/math]

 

Cheers,

 

Gabe

I think your mistake is that:

 

[math](-1)(\sqrt{-1})\neq\sqrt{(-1)(-1)(-1)}[/math]

You are attempting to apply the relation [math]a^ma^n=a^{m+n}[/math] to a situation where this relation does not apply: complex numbers. You are also abusing the square root symbol, which strictly applies only to non-negative reals.

Hey all,

 

Where am I making a mistake?

 

[math]-i=(-1)\sqrt{-1}=\sqrt{(-1)(-1)(-1)}=\sqrt{-1}=i[/math]

 

Cheers,

 

Gabe

 

[math] (-1)(\sqrt{-1})\neq\sqrt{(-1)(-1)(-1)} [/math] because [math] \sqrt{a^2}=\left|a \right| [/math]

 

aspon myslim...

  • Author

If [math]\sqrt{-1}[/math] is illegal, how can [math]i[/math] be defined?

 

aspon myslim...

 

I told you, no Czech; only English :P:D

The error in the original post ultimately lies with the implicit use of [math]\sqrt{(-1)^2}=-1[/math]. There is no need for imaginary numbers here. For example, using [math](-1)^4 = 1 = ((-1)^2)^2[/math],

 

[math]\aligned

1 &= \sqrt{1} \\

&= \sqrt{(-1)^4} \\

&= \sqrt{(-1)^2}\sqrt{(-1)^2} \\

&= \sqrt{(-1)^2}\sqrt{1} \\

&= (-1)\times 1 \\

&= -1

\endaligned[/math]

 

The square root function takes a branch cut at x=0. Proofs that -x=x involve an abuse of this branch cut. Don't do that!

  • Author

Ah, I see now. My bad. Thanks for explaining guys ;-)

 

Cheers,

 

Gabe

  • 2 weeks later...

You can proove a negative very easily, by saying,

 

[math]x=zy^2[/math]

 

Add x to both sides;

 

[math]2x=zy^2+x[/math]

 

Divide by 2 on both sides

 

[math]x= \frac{1}{2} (zy^2+x)[/math]

 

Manipulating through algebra gives:

 

[math]\frac{1}{2} x-x= \frac{1}{2} (zy^2)[/math]

 

Solve the equation;

 

[math]\frac{1}{2} x= -\frac{1}{2} zy^2[/math]

 

Replace [math]\frac{1}{2}[/math] x with [math]\frac{1}{2}[/math] zy^2 then

 

[math]\frac{1}{2} x= -\frac{1}{2} x[/math]

 

Which is my own derivation.

Edited by MolecularEnergy

[math]

\frac{1}{2} x-x= \frac{1}{2} (zy^2)

[/math]

 

Here lies your mistake.

 

It should be:

 

 

[math]

x= \frac{1}{2} (zy^2) + \frac{1}{2} x

[/math]

 

 

[math]

x - \frac{1}{2} x= \frac{1}{2} (zy^2)

[/math]

 

Which works out fine.

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.