Jump to content

Spanning Sets

Featured Replies

I'm having a little trouble with some of my homework here and need a little guidence. The problems are both proofs and I have a lot of trouble deciding what a conclusive proof is. I'm looking for a little hint on what might be a good first step or two in showing the following two things:

 

1) Let (v1...vn) be a spanning set for the vector space V and let v be any other vector in V. Show that v,v1,...,vn are linearly dependent.

 

I'm just having trouble conclusively showing in this one that the coefficient on v must be some combination of the others. I know it's true through common sense but I can't prove it.

 

2) Let V be a vector space. Let v1, v2, v3 and v4 be vectors in V. Assume that {v1, v2, v3} is linearly independent and that {v1, v2, v3, v4} is linearly dependent. Prove that v4 is in Span(v1, v2, v3).

 

Same as before, I can see why it's true but can't prove it. Any help?

@1) There is a set [math] \{ a_i \}: v = \sum_i a_i v_i [/math] by the definition of a spanning set => [math] 0= 1*v - \sum_i a_i v_i [/math] which is linear dependence (factor 1 explicitely written for clarification).

@2) there is an a>0 so that 0 = a*v4 + x*v1+y*v2+z*v3 => v4 = (x*v1+y*v2+z*v3)/a. Left for you: Why is there such an a? what if v4=0?

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.