Jump to content

Featured Replies

 

1c22ψt22ψx22ψy22ψz2=m2c22ψ
 
Let
ψ=ψ0exp(iS(t,x,y,z))

 

2ψt2=t(texp(iS(t,x,y,z)))

\[\frac{\partial^2\psi}{\partial t^2} = \psi_0 \frac{\partial}{\partial t}(\frac{\partial}{\partial t} exp(i\frac{S(t,x,y,z)}{\hbar})) = \psi_0 \frac{\partial}{\partial t}(\frac{i}{hbar} exp(i\frac{S(t,x,y,z)}{\hbar}) \frac{\partial S(t,x,y,z)}{\partial t})\]

 


 

Edited by KJW

  • Author

Klein-Gordon equation:

\[\frac{1}{c^2}\frac{\partial^2\psi}{\partial t^2} - \frac{\partial^2\psi}{\partial x^2} - \frac{\partial^2\psi}{\partial y^2} - \frac{\partial^2\psi}{\partial z^2} = -\frac{m^2c^2}{\hbar^2}\psi \]

\[\psi = \psi_0 exp(\frac{i}{\hbar} S(t,x,y,z))\]

where S(t,x,y,z) is the action


\[\frac{\partial^2\psi}{\partial t^2} = \frac{\partial}{\partial t}(\frac{\partial}{\partial t} \psi_0 exp(\frac{i}{\hbar} S)) = \frac{\partial}{\partial t}(\frac{i}{\hbar} \psi_0 exp(\frac{i}{\hbar} S) \frac{\partial S}{\partial t}) = \frac{i}{\hbar} \psi_0 exp(\frac{i}{\hbar} S) \frac{\partial^2 S}{\partial t^2} - \frac{1}{\hbar^2} \psi_0 exp(\frac{i}{\hbar} S) (\frac{\partial S}{\partial t})^2 = \frac{i}{\hbar} \psi \frac{\partial^2 S}{\partial t^2} - \frac{1}{\hbar^2} \psi (\frac{\partial S}{\partial t})^2\]


\[-i\hbar (\frac{1}{c^2}\frac{\partial^2 S}{\partial t^2} - \frac{\partial^2 S}{\partial x^2} - \frac{\partial^2 S}{\partial y^2} - \frac{\partial^2 S}{\partial z^2}) + (\frac{1}{c^2}(\frac{\partial S}{\partial t})^2 - (\frac{\partial S}{\partial x})^2 - (\frac{\partial S}{\partial y})^2 - (\frac{\partial S}{\partial z})^2) = m^2c^2\]


In the classical limit of [math]\hbar = 0[/math], the linear second-order Klein-Gordon equation becomes the non-linear first-order Hamilton-Jacobi equation:

\[(\frac{1}{c^2}(\frac{\partial S}{\partial t})^2 - (\frac{\partial S}{\partial x})^2 - (\frac{\partial S}{\partial y})^2 - (\frac{\partial S}{\partial z})^2) = m^2c^2\]

 

Edited by KJW

  • Author

Klein-Gordon equation:

\[\frac{1}{c^2}\frac{\partial^2\psi}{\partial t^2} - \frac{\partial^2\psi}{\partial x^2} - \frac{\partial^2\psi}{\partial y^2} - \frac{\partial^2\psi}{\partial z^2} = -\frac{m^2c^2}{\hbar^2}\psi \]

\[\psi = \psi_0 exp(\frac{i}{\hbar} S(t,x,y,z))\]

where [math]S(t,x,y,z)[/math] is the action.


\[\frac{\partial^2\psi}{\partial t^2} = \frac{\partial}{\partial t}(\frac{\partial}{\partial t} \psi_0 exp(\frac{i}{\hbar} S)) = \frac{\partial}{\partial t}(\frac{i}{\hbar} \psi_0 exp(\frac{i}{\hbar} S) \frac{\partial S}{\partial t}) = \frac{i}{\hbar} \psi_0 exp(\frac{i}{\hbar} S) \frac{\partial^2 S}{\partial t^2} - \frac{1}{\hbar^2} \psi_0 exp(\frac{i}{\hbar} S) (\frac{\partial S}{\partial t})^2 = \frac{i}{\hbar} \psi \frac{\partial^2 S}{\partial t^2} - \frac{1}{\hbar^2} \psi (\frac{\partial S}{\partial t})^2\]

Similarly:

\[\frac{\partial^2\psi}{\partial x^2} = \frac{i}{\hbar} \psi \frac{\partial^2 S}{\partial x^2} - \frac{1}{\hbar^2} \psi (\frac{\partial S}{\partial x})^2 \;\;;\;\; \frac{\partial^2\psi}{\partial y^2} = \frac{i}{\hbar} \psi \frac{\partial^2 S}{\partial y^2} - \frac{1}{\hbar^2} \psi (\frac{\partial S}{\partial y})^2 \;\;;\;\; \frac{\partial^2\psi}{\partial z^2} = \frac{i}{\hbar} \psi \frac{\partial^2 S}{\partial z^2} - \frac{1}{\hbar^2} \psi (\frac{\partial S}{\partial z})^2\]


Thus:


\[-i\hbar (\frac{1}{c^2}\frac{\partial^2 S}{\partial t^2} - \frac{\partial^2 S}{\partial x^2} - \frac{\partial^2 S}{\partial y^2} - \frac{\partial^2 S}{\partial z^2}) + (\frac{1}{c^2}(\frac{\partial S}{\partial t})^2 - (\frac{\partial S}{\partial x})^2 - (\frac{\partial S}{\partial y})^2 - (\frac{\partial S}{\partial z})^2) = m^2c^2\]


In the classical limit of [math]\hbar = 0[/math], the linear second-order Klein-Gordon equation becomes the non-linear first-order Hamilton-Jacobi equation:

\[\frac{1}{c^2}(\frac{\partial S}{\partial t})^2 - (\frac{\partial S}{\partial x})^2 - (\frac{\partial S}{\partial y})^2 - (\frac{\partial S}{\partial z})^2 = m^2c^2\]

 

Edited by KJW

  • 2 weeks later...
  • Author

[math]1 \longleftrightarrow 1[/math]
[math]2 \longleftrightarrow 4[/math]
[math]3 \longleftrightarrow 9[/math]
[math]4 \longleftrightarrow 16[/math]
[math]5 \longleftrightarrow 25[/math]
[math]6 \longleftrightarrow 36[/math]
[math]7 \longleftrightarrow 49[/math]
[math]8 \longleftrightarrow 64[/math]
[math]...[/math]
[math]n \longleftrightarrow n^2[/math]
[math]...[/math]

[math]\textstyle \mathbb {N}[/math]

Edited by KJW

  • Author

[math]\textstyle 2\mathbb {Z}[/math]

[math]2\textstyle 2\mathbb {Z}[/math]

[math]\mathbb {ABCDEFGHIJKLMNOPQRSTUVWXYZ}[/math]

Edited by KJW

  • Author

[math]

\documentclass{article}
\begin{document}
Evaluate the sum $\displaystyle\sum\limits_{i=0}^n i^3$.
\end{document} 

[/math]

[math]Evaluate the sum $\displaystyle\sum\limits_{i=0}^n i^3$.[/math]

Edited by KJW

  • Author

[math]\displaystyle \lim _{n \to \infty} a_{n}=L[/math]
[math]\lim _{n \to \infty} a_{n}=L[/math]

  • Author

[math]f(x)\; {\buildrel\rm def\over=} \;x+1[/math]

[math]\buildrel\rm def\over=[/math]

[math]\buildrel def \over=[/math]

Edited by KJW

  • Author

[math]\displaystyle \sum_{k=0}^{\infty} (-1)^{k} x^{nk} = \dfrac{1}{1 + x^{n}}
\\
y = \displaystyle \sum_{k=0}^{\infty} (-1)^{k} x^{nk}[/math]

Edited by KJW

  • Author

[math]\overbrace{\dfrac{d}{dx} \Biggl( \Biggr. x \cdots \dfrac{d}{dx} \Biggl( \Biggr. x}^{n}\displaystyle \sum_{k=0}^{\infty} (-1)^{k} x^{k} \Biggl. \Biggr) \cdots \Biggl. \Biggr) = \displaystyle \sum_{k=0}^{\infty} (-1)^{k} (k+1)^n x^{k} = \eta(-n)[/math] for [math]x = 1[/math]

Edited by KJW

  • Author

deleted

Edited by KJW

  • Author

deleted

Edited by KJW

  • Author

deleted

Edited by KJW

  • Author

[math]\times\!\!\!\!\phi^2[/math]

 

Edited by KJW

  • 2 weeks later...
  • Author

deleted

 

Edited by KJW

  • 2 months later...
  • Author

[math](ds)^2 = (c^2 - \dfrac{r^2}{t^2}) (dt)^2 + \color{red} {\dfrac{2r}{t} (dt)(dr)} - (dr)^2 - r^2 ((d\theta)^2 + sin^2 \theta (d\phi)^2)[/math]

 

For me to complete this, I need to apply a coordinate transformation to remove the part in red😉

 

Edited by KJW

  • Author

deleted

Edited by KJW

  • Author

deleted

Edited by KJW

  • Author

deleted

Edited by KJW

  • 1 month later...
  • Author

[math]\buildrel \rm def \over =[/math]

Edited by KJW

  • Author

deleted

 

Edited by KJW

  • Author

deleted

 

Edited by KJW

  • Author

deleted

 

Edited by KJW

  • Author

test bold

test italic

test underline

test strikethrough

test subscript

test superscript

test font size="72"

test end

 

Edited by KJW

  • Author
 

test

Edited by KJW

Please sign in to comment

You will be able to leave a comment after signing in

Sign In Now

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.