Jump to content

KJW Mathematics


KJW

Recommended Posts

 

1c22ψt22ψx22ψy22ψz2=m2c22ψ
 
Let
ψ=ψ0exp(iS(t,x,y,z))

 

2ψt2=t(texp(iS(t,x,y,z)))

\[\frac{\partial^2\psi}{\partial t^2} = \psi_0 \frac{\partial}{\partial t}(\frac{\partial}{\partial t} exp(i\frac{S(t,x,y,z)}{\hbar})) = \psi_0 \frac{\partial}{\partial t}(\frac{i}{hbar} exp(i\frac{S(t,x,y,z)}{\hbar}) \frac{\partial S(t,x,y,z)}{\partial t})\]

 


 

Edited by KJW
Link to comment
Share on other sites

Klein-Gordon equation:

\[\frac{1}{c^2}\frac{\partial^2\psi}{\partial t^2} - \frac{\partial^2\psi}{\partial x^2} - \frac{\partial^2\psi}{\partial y^2} - \frac{\partial^2\psi}{\partial z^2} = -\frac{m^2c^2}{\hbar^2}\psi \]

\[\psi = \psi_0 exp(\frac{i}{\hbar} S(t,x,y,z))\]

where S(t,x,y,z) is the action


\[\frac{\partial^2\psi}{\partial t^2} = \frac{\partial}{\partial t}(\frac{\partial}{\partial t} \psi_0 exp(\frac{i}{\hbar} S)) = \frac{\partial}{\partial t}(\frac{i}{\hbar} \psi_0 exp(\frac{i}{\hbar} S) \frac{\partial S}{\partial t}) = \frac{i}{\hbar} \psi_0 exp(\frac{i}{\hbar} S) \frac{\partial^2 S}{\partial t^2} - \frac{1}{\hbar^2} \psi_0 exp(\frac{i}{\hbar} S) (\frac{\partial S}{\partial t})^2 = \frac{i}{\hbar} \psi \frac{\partial^2 S}{\partial t^2} - \frac{1}{\hbar^2} \psi (\frac{\partial S}{\partial t})^2\]


\[-i\hbar (\frac{1}{c^2}\frac{\partial^2 S}{\partial t^2} - \frac{\partial^2 S}{\partial x^2} - \frac{\partial^2 S}{\partial y^2} - \frac{\partial^2 S}{\partial z^2}) + (\frac{1}{c^2}(\frac{\partial S}{\partial t})^2 - (\frac{\partial S}{\partial x})^2 - (\frac{\partial S}{\partial y})^2 - (\frac{\partial S}{\partial z})^2) = m^2c^2\]


In the classical limit of [math]\hbar = 0[/math], the linear second-order Klein-Gordon equation becomes the non-linear first-order Hamilton-Jacobi equation:

\[(\frac{1}{c^2}(\frac{\partial S}{\partial t})^2 - (\frac{\partial S}{\partial x})^2 - (\frac{\partial S}{\partial y})^2 - (\frac{\partial S}{\partial z})^2) = m^2c^2\]

 

Edited by KJW
Link to comment
Share on other sites

Klein-Gordon equation:

\[\frac{1}{c^2}\frac{\partial^2\psi}{\partial t^2} - \frac{\partial^2\psi}{\partial x^2} - \frac{\partial^2\psi}{\partial y^2} - \frac{\partial^2\psi}{\partial z^2} = -\frac{m^2c^2}{\hbar^2}\psi \]

\[\psi = \psi_0 exp(\frac{i}{\hbar} S(t,x,y,z))\]

where [math]S(t,x,y,z)[/math] is the action.


\[\frac{\partial^2\psi}{\partial t^2} = \frac{\partial}{\partial t}(\frac{\partial}{\partial t} \psi_0 exp(\frac{i}{\hbar} S)) = \frac{\partial}{\partial t}(\frac{i}{\hbar} \psi_0 exp(\frac{i}{\hbar} S) \frac{\partial S}{\partial t}) = \frac{i}{\hbar} \psi_0 exp(\frac{i}{\hbar} S) \frac{\partial^2 S}{\partial t^2} - \frac{1}{\hbar^2} \psi_0 exp(\frac{i}{\hbar} S) (\frac{\partial S}{\partial t})^2 = \frac{i}{\hbar} \psi \frac{\partial^2 S}{\partial t^2} - \frac{1}{\hbar^2} \psi (\frac{\partial S}{\partial t})^2\]

Similarly:

\[\frac{\partial^2\psi}{\partial x^2} = \frac{i}{\hbar} \psi \frac{\partial^2 S}{\partial x^2} - \frac{1}{\hbar^2} \psi (\frac{\partial S}{\partial x})^2 \;\;;\;\; \frac{\partial^2\psi}{\partial y^2} = \frac{i}{\hbar} \psi \frac{\partial^2 S}{\partial y^2} - \frac{1}{\hbar^2} \psi (\frac{\partial S}{\partial y})^2 \;\;;\;\; \frac{\partial^2\psi}{\partial z^2} = \frac{i}{\hbar} \psi \frac{\partial^2 S}{\partial z^2} - \frac{1}{\hbar^2} \psi (\frac{\partial S}{\partial z})^2\]


Thus:


\[-i\hbar (\frac{1}{c^2}\frac{\partial^2 S}{\partial t^2} - \frac{\partial^2 S}{\partial x^2} - \frac{\partial^2 S}{\partial y^2} - \frac{\partial^2 S}{\partial z^2}) + (\frac{1}{c^2}(\frac{\partial S}{\partial t})^2 - (\frac{\partial S}{\partial x})^2 - (\frac{\partial S}{\partial y})^2 - (\frac{\partial S}{\partial z})^2) = m^2c^2\]


In the classical limit of [math]\hbar = 0[/math], the linear second-order Klein-Gordon equation becomes the non-linear first-order Hamilton-Jacobi equation:

\[\frac{1}{c^2}(\frac{\partial S}{\partial t})^2 - (\frac{\partial S}{\partial x})^2 - (\frac{\partial S}{\partial y})^2 - (\frac{\partial S}{\partial z})^2 = m^2c^2\]

 

Edited by KJW
Link to comment
Share on other sites

  • 2 weeks later...

[math]1 \longleftrightarrow 1[/math]
[math]2 \longleftrightarrow 4[/math]
[math]3 \longleftrightarrow 9[/math]
[math]4 \longleftrightarrow 16[/math]
[math]5 \longleftrightarrow 25[/math]
[math]6 \longleftrightarrow 36[/math]
[math]7 \longleftrightarrow 49[/math]
[math]8 \longleftrightarrow 64[/math]
[math]...[/math]
[math]n \longleftrightarrow n^2[/math]
[math]...[/math]

[math]\textstyle \mathbb {N}[/math]

Edited by KJW
Link to comment
Share on other sites

[math]

\documentclass{article}
\begin{document}
Evaluate the sum $\displaystyle\sum\limits_{i=0}^n i^3$.
\end{document} 

[/math]

[math]Evaluate the sum $\displaystyle\sum\limits_{i=0}^n i^3$.[/math]

Edited by KJW
Link to comment
Share on other sites

Posted (edited)

[math]\overbrace{\dfrac{d}{dx} \Biggl( \Biggr. x \cdots \dfrac{d}{dx} \Biggl( \Biggr. x}^{n}\displaystyle \sum_{k=0}^{\infty} (-1)^{k} x^{k} \Biggl. \Biggr) \cdots \Biggl. \Biggr) = \displaystyle \sum_{k=0}^{\infty} (-1)^{k} (k+1)^n x^{k} = \eta(-n)[/math] for [math]x = 1[/math]

Edited by KJW
Link to comment
Share on other sites

  • 2 weeks later...
  • 2 months later...
Posted (edited)

[math](ds)^2 = (c^2 - \dfrac{r^2}{t^2}) (dt)^2 + \color{red} {\dfrac{2r}{t} (dt)(dr)} - (dr)^2 - r^2 ((d\theta)^2 + sin^2 \theta (d\phi)^2)[/math]

 

For me to complete this, I need to apply a coordinate transformation to remove the part in red😉

 

Edited by KJW
Link to comment
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.