Jump to content

Featured Replies

(From: Rieffel, Eleanor G.; Polak, Wolfgang H.. Quantum Computing: A Gentle Introduction.)

image.png.3b1a57aa932f13dbc12e9607659905fa.png

Take v in S1 and w in S2: 〈v|w〉 = 0.

〈Uv|Uw〉 = 〈v|UU|w〉 = 〈v|w〉 = 0.

Too easy.

  • Author

image.png.aec7931b10e7dd916969f90ef4be6f8b.png

a. U =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 

b. Same as a but in the {|+〉, |-〉} basis.

c. If such U existed, it would transform U(|00〉) = |00〉 and U(|10〉) = |11〉.

Then U(|+〉|0〉) = U(1/√2 (|0〉 + |1〉)|0〉) = 1/√2 (|00〉 + |11〉) ≠ |++〉, i.e. |+〉 would not be cloned.

 

 

Edited by Genady

  • Author

Continuing exercise 5.2 above.

d. Construct the operator as follows:

U = 

/* required cloning */

|0+ 0+〉 〈0+ 0+| + |0- 0-〉 〈0- 0+| + |1+ 1+〉 〈1+ 0+| + |1- 1-〉 〈1- 0+| +

/* transpose */

                              |0- 0+〉 〈0- 0-| + |1+ 0+〉 〈1+ 1+| + |1- 0+〉 〈1- 1-| +

/* diagonal */

                             |0+ 0-〉 〈0+ 0-| + |0- 0+〉 〈0- 0+| + |0- 0-〉 〈0- 0-| + 

|0+ 1+〉 〈0+ 1+| + |0+ 1-〉 〈0+ 1-| + |0- 1+〉 〈0- 1+| + |0- 1-〉 〈0- 1-| +

|1+ 0+〉 〈1+ 0+| + |1+ 0-〉 〈1+ 0-| + |1- 0+〉 〈1- 0+| + |1- 0-〉 〈1- 0-| + 

|1+ 1+〉 〈1+ 1+| + |1+ 1-〉 〈1+ 1-| + |1- 1+〉 〈1- 1+| + |1- 1-〉 〈1- 1-|

 

e. This set includes c, thus impossible to clone.

  • Author

I've made errors in the 'diagonal' part of the construction for the question 'd' above. One needs to be careful not to include diagonal terms in rows or columns which already have terms in them. Thus, the correction:

/* diagonal */

                             |0+ 0-〉 〈0+ 0-| +                            

|0+ 1+〉 〈0+ 1+| + |0+ 1-〉 〈0+ 1-| + |0- 1+〉 〈0- 1+| + |0- 1-〉 〈0- 1-| +

                             |1+ 0-〉 〈1+ 0-| +                             |1- 0-〉 〈1- 0-| + 

                             |1+ 1-〉 〈1+ 1-| + |1- 1+〉 〈1- 1+|

  • Author

image.png.f89ed23a7576d90ed5c5b3b424795ae4.png

(For the reference, the BB84 is described here: https://www.scienceforums.net/topic/132653-quantum-key-distribution/)

I assume that Eve always measures her qubit in the standard basis. Let's see what happens:

1. Alice's bit is 0.

1.1. Alice and Bob pick the standard basis. She sends |0〉. Eve applies Cnot: |0〉|0〉 ↦ |0〉|0〉.

         Bob gets 0. Correct. Eve gets 0. Correct.

1.2. Alice and Bob pick the Hadamard basis. Alise sends 1/√2(|0〉+|1〉). Eve applies Cnot: 1/√2(|0〉+|1〉)|0〉 ↦ 1/√2(|0〉|0〉+|1〉|1〉). 

1.2.1. Bob gets 0. Correct. Eve gets 0. Correct.

1.2.2. Bob gets 0. Correct. Eve gets 1. Error.

1.2.3. Bob gets 1. Error. Eve gets 0. Correct.

1.2.4. Bob gets 1. Error. Eve gets 1. Error.

2. Alice's bit is 1.

2.1. Alice and Bob pick the standard basis. She sends |1〉. Eve applies Cnot: |1〉|0〉 ↦ |1〉|1〉.

         Bob gets 1. Correct. Eve gets 1. Correct.

2.2. Alice and Bob pick the Hadamard basis. Alise sends 1/√2(|0〉-|1〉). Eve applies Cnot: 1/√2(|0〉-|1〉)|0〉 ↦ 1/√2(|0〉|0〉-|1〉|1〉). 

2.2.1. Bob gets 0. Error. Eve gets 0. Error.

1.2.2. Bob gets 0. Error. Eve gets 1. Correct.

1.2.3. Bob gets 1. Correct. Eve gets 0. Error.

1.2.4. Bob gets 1. Correct. Eve gets 1. Correct.

 

Looks like Eve gets 75% of Alice's bits correctly and introduces 25% errors in the bits measured by Bob, the same as in the original scheme.

Am I missing something?

 

  • Author

image.png.50859153cfa1a2e9607d82ce45ebf0a8.png

For the reference:

image.png.f2fc1329a2f1e1ff9668f969d18f0ba7.png

image.png.ba61f3e73347f03b83921ec7806094c9.png

image.png.a79f5670014f4169688ff0b47f8ca23f.png

K(0) = T(0) = R(0) = I. Thus, K(0)T(0)R(0)T(0) = I.

T(π/2) =  i *

1 0
0 -1

R(π/2) = 

0 1
-1 0

T(π/2)R(π/2)T(0) = iX. X = -iT(π/2)R(π/2)T(0).

R(π/4) = 1/√2*

1 1
-1 1

T(π/2)R(π/4)T(0) = iH. H = -iT(π/2)R(π/4)T(0).

 

 

  • Author

An n-qubit cat state is the state 1/√2 (|00 . . . 0〉 + |11 . . . 1). Design a circuit that, upon input of |00 . . . 0〉, constructs a cat state.

========

My idea is first to transform the first qubit to the superposition using the Hadamard gate and then to propagate the result to the rest of the qubits with the Cnot gates:

image.png.fc042d4a6ea1e5c7fe728d211b809f57.png

 

 

 

 

 

I think you accidentally produced a wormhole that moved the site forward in time one week.  

Please sign in to comment

You will be able to leave a comment after signing in

Sign In Now

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.