Jump to content

Featured Replies

This post will be Revised.Pl wait.

[it might be necessary to refresh the page or viewing the formulas/equations]

In this writing we dive a highly restrictive relation for the metric coefficients in Genera Relativity
We start with the the formula
\[\sum g^{\alpha\beta}g _{\alpha\beta}=4\]    (1)
Summation extends over alpha and beta

In the orthogonal systems (1) reduces to

\[g_{00}g^{00}+ g_{11}g^{11}+ g_{22}g^{22}+ g_{33}g^{33}=4\] (1')
Applying the reversed Cauchy Schwarz inequality to (1')we have,
\[\left[ g_{00}g^{00}- g_{11}\left(-g^{11}\right)- g_{22}\left(-g^{22}\right)- g_{33}\left(-g^{33}\right)\right]^2\\ \ge\left(g_{00}^2-g_{11}^2-g_{22}^2-g_{33}^2\right)\left(\left|(g^{00}\right)^2-\left(g^{11}\right)^2-\left(g^{22}\right)^2-\left(g^{33}\right)^2\right)]\] (2)
Using (1) and (2) we obtain,
\[ 16\ge \left(g_{00}^2-g_{11}^2-g_{22}^2-g_{33}^2\right)\ \left[\left(g^{00}\right)^2-\left(g^{11}\right)^2-\left(g^{22}\right)^2-\left(g^{33}\right)^2\right]\] (3)
Since for orthogonal coordinate systems we have the formula[1]

\[g_{\alpha \alpha}g^{\alpha\alpha}=1\]
with no summation on alpha in the above
\[\Rightarrow g_{\alpha \alpha}=\frac{1}{g^{\alpha\alpha}}\]

we now have,
\[ \left [g_{00}^2-g_{11}^2-g_{22}^2-g_{33}^2\right]\\ \left[\left(\frac{1}{g_{00}}\right)^2-\left(\frac{1}{g_{11}}\right)^2-\left(\frac{1}{g_{22}}\right)^2-\left(\frac{1}{g_{33}}\right)^2\right]\le 16\]
(4)

Equation (4) is highly restrictive.

The Reversed Cauchy Schwarz Inequality:
We consider 4  real numbers
\[a_1,a_2\]and \[b_1,b_2\]
We have


\[\left(a_1b_1-a_2b_2\right)^2- \left(a_1^2-a_2^2\right)\left(b_1^2-b_2^2\right)=\left(a_ab_2-a_2b_1\right)^2\ge 0\]
\[\left(a_1b_1-a_2b_2\right)^2\ge \left(a_1^2-a_2^2\right)\left(b_1^2-b_2^2\right)\]

\[\left(a_1b_1-a_2b_2\right)^2\ge \left|a_1^2-a_2^2\right|\left|b_1^2-b_2^2\right|\]  (5)


Next we take 2n real numbers a1,a2...an and b1,b2..bn
By applying the Cauchy Schwarz inequality we have,
[\left(a_2b_2+a_3b_3....+a_nb_n\right)^2\le\left(a_2^2+a_3^2+.....a_n^2\right)\left(b_2^2+b_3^2+.....b_n^2\right)\] 
\[\frac{\left(a_2b_2+a_3b_3....+a_nb_n\right)^2}{\left(a_2^2+a_3^2+.....a_n^2\right)\left(b_2^2+b_3^2+.....b_n^2\right)}\le 1\]
\[-1\le \frac{a_2b_2+a_3b_3....+a_nb_n}{\sqrt{a_2^2+a_3^2+.....a_n^2}\sqrt{b_2^2+b_3^2+.....b_n^2}}\le 1\]
Therefore
\[\frac{a_2b_2+a_3b_3....+a_nb_n}{\sqrt{a_2^2+a_3^2+.....a_n^2}\sqrt{b_2^2+b_3^2+.....b_n^2}}=\cos \theta\]

\[\Rightarrow  a_2b_2+a_3b_3....+a_nb_n=\sqrt{a_2^2+a_3^2+.....a_n^2}\sqrt{b_2^2+b_3^2+.....b_n^2}\cos \theta  \]
\[a_1 b_1-a_2b_2-a_3b_3....-a_nb_n= \\ a_1b_1-\sqrt{a_2^2+a_3^2+.....a_n^2}\sqrt{b_2^2+b_3^2+.....b_n^2}\cos \theta\] (6)
Applying (5) on the right side of (6) we obtain,
\[ a_1 b_1-a_2b_2-a_3b_3....-a_nb_n  \ge\\ \sqrt{\left|a_1^2-a_2^2-a_3^2.....-a_n^2\right|}\sqrt{\left|b_1^2-b_2^2-b_3^2.....-b_n^2\right|}\]
Or

\[-\sqrt{a_2^2+a_3^2+.....a_n^2}\sqrt{b_2^2+b_3^2+.....b_n^2}\cos \theta\\ \le a_1 b_1-a_2b_2-a_3b_3....-a_nb_n \]
Therefore


\[\left(a_1 b_1-a_2b_2-a_3b_3....-a_nb_n\right)^2 \ge \left|a_1^2-a_2^2-a_3^2.....-a_n^2\right| \\ \times \left|b_1^2-b_2^2-b_3^2.....-b_n^2\right|\]
References
1. Spiegel M,THeory and Problems of Vector Analysis with an Introduction to Tensor Analysis Schaum's series, McGraw-Hill Book Company,Singapore, 1974,Chapter8; Tensor Analysis, problem 48b,p194
 


 

Edited by Anamitra Palit

  • Author

Revised Post:

[One may have to refresh the page to view the formulas/equations]
In this writing we dive a highly restrictive relation for the metric coefficients in General Relativity
We start with the the formula
\[\sum g^{\alpha\beta}g _{\alpha\beta}=4\]   (1)
Summation extends over alpha and beta.

In orthogonal systems (1) reduces to

\[g_{00}g^{00}+g_{11}g^{11}+g_{22}g^{22}+g_{33}g^{33}=4\]  (1' )

Applying the reversed Cauchy Schwarz inequality we have,
\[\left[ g_{00}g^{00}- g_{11}\left(-g^{11}\right)- g_{22}\left(-g^{22}\right)- g_{33}\left(-g^{33}\right)\right]^2\\ \ge\left(g_{00}^2-g_{11}^2-g_{22}^2-g_{33}^2\right)\left(\left(g^{00}\right)^2-\left(g^{11}\right)^2-\left(g^{22}\right)^2-\left(g^{33}\right)^2\right)\] (2)
Using (1) and (2) we obtain,
\[ 16\ge \left|g_{00}^2-g_{11}^2-g_{22}^2-g_{33}^2\right|\\ \left|\left(g^{00}\right)^2-\left(g^{11}\right)^2-\left(g^{22}\right)^2-\left(g^{33}\right)^2\right|\] (3)
Since for orthogonal coordinate systems we have the formula[1]

\[g_{\alpha \alpha}g^{\alpha\alpha}=1\]
with no summation on alpha in the above
\[\Rightarrow g_{\alpha \alpha}=\frac{1}{g^{\alpha\alpha}}\]

we now have,
\[ \left[g_{00}^2-g_{11}^2-g_{22}^2-g_{33}^2\right]\\ \left[\left(\frac{1}{g_{00}}\right)^2-\left(\frac{1}{g_{11}}\right)^2-\left(\frac{1}{g_{22}}\right)^2-\left(\frac{1}{g_{33}}\right)^2\right]\le 16\]
(4)
Equation (4) is highly restrictive.

On The Reversed Cauchy Schwarz Inequality:
We consider 4  real numbers
\[a_1,a_2\]and \[b_1,b_2\]
We have


\[\left(a_1b_1-a_2b_2\right)^2- \left(a_1^2-a_2^2\right)\left(b_1^2-b_2^2\right)=\left(a_ab_2-a_2b_1\right)^2\ge 0\]
\[\left(a_1b_1-a_2b_2\right)^2\ge \left(a_1^2-a_2^2\right)\left(b_1^2-b_2^2\right)\] (5)

Next we take 2n real numbers a1,a2...an and b1,b2..bn
By applying the Cauchy Schwarz inequality we have,
\[\left(a_2b_2+a_3b_3....+a_nb_n\right)^2\le\left(a_2^2+a_3^2+.....a_n^2\right)\left(b_2^2+b_3^2+.....b_n^2\right)\] 
\[\frac{\left(a_2b_2+a_3b_3....+a_nb_n\right)^2}{\left(a_2^2+a_3^2+.....a_n^2\right)\left(b_2^2+b_3^2+.....b_n^2\right)}\le 1\]
\[-1\le \frac{a_2b_2+a_3b_3....+a_nb_n}{\sqrt{a_2^2+a_3^2+.....a_n^2}\sqrt{b_2^2+b_3^2+.....b_n^2}}\le 1\]
Therefore
\[\frac{a_2b_2+a_3b_3....+a_nb_n}{\sqrt{a_2^2+a_3^2+.....a_n^2}\sqrt{b_2^2+b_3^2+.....b_n^2}}=\cos \theta\]

\[\Rightarrow  a_2b_2+a_3b_3....+a_nb_n=\sqrt{a_2^2+a_3^2+.....a_n^2}\sqrt{b_2^2+b_3^2+.....b_n^2}\cos \theta  \]
\[a_1 b_1-a_2b_2-a_3b_3....-a_nb_n= \\ a_1b_1-\sqrt{a_2^2+a_3^2+.....a_n^2}\sqrt{b_2^2+b_3^2+.....b_n^2}\cos \theta\] (6)
\[\left(a_1 b_1-a_2b_2-a_3b_3....-a_nb_n\right)^2= \\ \left(a_1b_1-\sqrt{a_2^2+a_3^2+.....a_n^2}\sqrt{b_2^2+b_3^2+.....b_n^2}\cos \theta\right)^2\] (7)
Applying (5) on the right side of (7) we obtain,
\[\left(a_1b_1-\sqrt{a_2^2+a_3^2+.....a_n^2}\sqrt{b_2^2+b_3^2+.....b_n^2}\cos \theta\right)^2\ge \\ \left(a_1^2-a_2^2-a_3^2.....-a_n^2\right)\left(b_1^2-b_2^2-b_3^2.....-b_n^2\right)\] (8)

From (7) and (8) we have,

\[ \left (a_1 b_1-a_2b_2-a_3b_3....-a_nb_n\right)^2  \ge\\ \left(a_1^2-a_2^2-a_3^2.....-a_n^2\right)\left(b_1^2-b_2^2-b_3^2.....-b_n^2\right)\]References
1. Spiegel M,Theory and Problems of Vector Analysis with an Introduction to Tensor Analysis Schaum's series, McGraw-Hill Book Company,Singapore, 1974,Chapter8; Tensor Analysis, problem 48b,p194
 

Edited by Anamitra Palit

Guest
This topic is now closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.