Jump to content
Sign in to follow this  
asksciencequestions

How does one prove a Fourier transform is well defined?

Recommended Posts

I'm wondering what the general process is for this. In general being well defined means there is only exactly one output for each input or that if x=y, f(x) = f(y) which looks like the reverse of proving injectivity, I don't know if that is a coincidence or not.

Is a Fourier transform of a real function is still always real? I suppose the idea is that the imaginary component decays to 0 as you take the integral from -infinity to infinity so that it evaluates to a single finite real number, or actually, does the output of a the Fourier transform of a real valued function need to be real? Why do I generally see absolute value arguments in proving well-defined properties if complex functions have even more possible they can take? If you take an absolute value that only tells you anything about the magnitude of uncountably infinite numbers.

Edited by asksciencequestions

Share this post


Link to post
Share on other sites

The Fourier transform of an even real function is real. More generally, it is real for the function \(f\) if \(f(-x) = f(x)\) holds for almost every \(x \in \mathbb{R}.\)

The Fourier transform of a real function is otherwise not itself a real-valued function.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.