Jump to content

Maxwell's Structure of Light

Featured Replies

§ 1. Maxwell's Structure of Light

 

 

The electromagnetic transverse wave equations of light are derived using Maxwell's equations,

 

 

∇ x E = - dB/dt........................∇ x B = 1/c (dE/dt).....................................73a,b

 

 

Maxwell's curl equations (equ 73a,b) are expanded to form,

 

 

dEz/dy - dEy/dz = - dBx/dt...........................................................................74

 


dEx/dz - dEz/dx = - dBy/dt...........................................................................75

 


dEy/dx - dEx/dy = - dBz/dt...........................................................................76

 

 ...........................................................

 


dBz/dy - dBy/dz = 1/c (dEx/dt)....................................................................77

 


dBx/dz - dBz/dx = 1/c (dEy/dt)....................................................................78

 


dBy/dx - dBx/dy = 1/c (dEz/dt)..................................................... ..............79

 


The z-direction electric transverse wave equations is derived using equations 74 and 78 by eliminating dEy/dz and dBz/dx  to form (Jenkins, p. 410),

 
 
 

dEy/dz = 1/c (dBx/dt)..............................dBx/dz = 1/c (dEy/dt)...................80a,b

 

 

Differentiating equation 80a, with the respect to d/dz, and equation 80b with respect to d/dt produces (Condon, p, 1-108),

 

 

d2Ey/d2z = 1/c (d2Bx/dtdz)......................d2Bx/dtdz = 1/c (d2Ey/d2t)...........81a,b

 

 

Equating equations 81a,b,

 
 

d2Ey/d2z = 1/c2 (d2Ey/d2t)...........................................................................82

 

 
Differentiating equation 82a, with the respect to d/dt, and equation 82b with respect to d/dz produces ,

 

 

d2Ey/dtdz = 1/c (d2Bx/d2t)......................d2Bx/d2z = 1/c (d2Ey/dtdz)...........83a,b

 

 

Equating equations 83a,b forms,

 
 

d2Bx/d2z = 1/c2 (d2Bx/d2t)..........................................................................84

 
 

Equations 82 and 84 are used to derive the z direction electromagnetic transverse wave equations of light (fig 17),

 

 

Ey = Eo cos(kz - wt) ĵ ..............................................................................85

 

Bx = Bo cos(kz -wt) î ................................................................................86

 
 
In the derivation of equations 80a,b, 14 of the 18 differential components that constitute Maxwell's equations are eliminated since an electromagnetic field within a volume forms a horizontal wave.
 
 
What do you think of the mathematic that is being depicted?
  • 3 weeks later...

Um, Elimination doesn't work on differential equations, they are arrays unless you mean elimination in the array or matrix form to solve them.

maxwell-interaction.gif

maxwell-equations-and-propagation-in-ani

Wait, I get what he is saying, but he gave it the wrong term.

Edited by Vmedvil

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.