Jump to content

Double integral Help

Featured Replies

Hey,

I've been stuck on this problem for quite some time:

J = ∫0 ->4 sqrt(x) -> 2   (1 + y^2 * cos(x * sqrt(y))) dydx

The cos (x * sqrt(y)) is the one causing trouble. I can't seem to find a way to integrate this. I even tried to turn it to polar coordinates but nothing seems to work.

What am I doing wrong? Could someone point me in the right direction?

Thanks in advance.

PS: Sorry for my english, it's not my native language.

 I thought this had already been answered.  x ranging from 0 to 4, and y, for each x, ranging from sqrt{x} to 2 is the same as y ranging from 0 to 2 and, for each y, x ranging from y^2 to 4.  That is, this integral is the same as J= \int_0^2\int_{y^2}^4 (1+ y^2 cos(x\sqrt{y})dx dy  To do that, first let u= x\sqrt{y} so that du= \sqrt{y}dx  When x= y^2, u= y^2\sqrt{y}= y^{3/2} and when x= 4, u= 4\sqrt{y}= 4y^{1/2}.

The integral becomes (1/sqrt(y))\int_0^2\int_{y^{3/2}}^{4y^{1/2}} 1+ y^2cos(u)du dy

Edited by Country Boy

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.