Jump to content

Symmetry of Digit "2" In Squaring


mathspassion

Recommended Posts

Symmetry of Digit "2" In Squaring

If we square 11, it is very simple put 1(2*1) (12) get 121 same as square 12 put 1(2*2)(22) get 144 again for 13 we get 169 and for 14 we get 1 8 16=196 and so on.

When we go deep, we find that there is symmetry of two types

(2, 4, 6, 8, 10, 12, 14, 16, 18, 20 …. Diff is always 2) &

(1, 4 , 9 , 16, 25, 36, 49, 64, 81, 100 ) diff. is 3 5 7 9 11 13 15 17 19 and diff. of 3 5 7 9 11 always 2, so there is true symmetry .

Up to 19 it is right but at 20 how we can put 1 20 100 just because of symmetry.

 

  • 112 = 1 2 1

  • 122 = 1 4 4

  • 132 = 1 6 9

  • 142 = 1 8 16 = 100 + 80 + 16 = 196

  • 152 = 1 10 25 = 100 + 100 + 25 = 225

  • 162 = 1 12 36 = 100 + 120 + 36 = 256

  • 172 = 1 14 49 = 100 + 140 + 49 = 289

  • 182 = 1 16 64 = 100 + 160 + 64 = 324

  • 192 = 1 18 81 = 100 + 180 + 81 = 361

  • 202 = 1 102 = 1 20 100 = 100 + 200 + 100 = 400

  • 212 = 1 112 = 1 22 121 = 100 + 220 + 121 = 441

  • 222 = 1 122 = 1 24 144 = 100 + 240 + 144 = 484

  • 232 = 1 132 = 1 26 169 = 100 + 260 + 169 = 529

  • 242 = 1 142 = 1 28 196 = 100 + 280 + 196 = 576

  • 252 = 1 152 = 1 30 225 = 100 + 300 + 225 = 625

  • 262 = 1 162 = 1 32 256 = 100 + 320 + 256 = 676

  • 272 = 1 172 = 1 34 289 = 100 + 34 + 289 = 729

  • 282 = 1 182 = 1 36 324 = 100 + 360 + 324 = 784

  • 292 = 1 192 = 1 38 361 = 100 + 380 + 361 = 841

  • 302 = 1 202 = 1 40 400 = 100 + 400 + 400 = 900

 

There is a symmetry, a method, which is shown as below for 31, 41, 51 and so on.

  • 312 = 1 212 = 1 42 (1 11)2 = 1 42 (1 22 121)

= 961 = 121 + 220 + 100

= 441 + 420 + 100 = 961

  • 412 = 1 312 = 1 62 (1 21)2 = 162 (1 42) (1 11)2

= 1 62 (1 42) (1 22 121)

= 1 62 (961) = 961 + 620 + 100 = 1681

  • 512 = 1 412 = 1 82 (1 31)2 = 1 82 (1 62) (1 21)2

= 1 82 (1 62) (1 42) (1 11)2

= 1 82 (1 62) (1 42) (1 22 121)

= 1 82(1681) = 1681 + 820 + 100 = 2601

  • 612 = 1 512 = 1 102 (41)2 = 1 102 (1 82) (1 31)2

= 1 102 (1 82) (1 62) (1 21)2

= 1 102 (1 82) (1 62) (1 42) (1 11)2

= 1 102 (1 82) (1 62) (1 42) (1 22 121)

= 1 102 (2601) = 2601 + 1020 + 100 = 3721

  • 712 = 1 612 = 1 122 (1 51)2 = 1 122 (1 102) (41)2

= 1 122 (1 102) (1 82) (1 31)2 = 1 122 (1 102) (1 82) (1 62) (1 21)2

= 1 122 (1 102) (1 82) (1 62) (1 42)(1 11)2

= 1 122 (1 102) (1 82) (1 62) (1 42) (1 11)2

= 1 122 (1 102) (1 82) (1 62) (1 42) (1 22 121)

= 3721 + 1220 + 100 = 5041

  • 812 = 1 712 = 1 142 (1 612) = 1 122 (1 51)2 = 1 122 (1 102) (41)2

= 1 122 (1 102) (1 82) (1 31)2 = 1 122 (1 102) (1 82) (1 62) (1 21)2

= 1 122 (1 102) (1 82) (1 62) (1 42)(1 11)2

= 1 122 (1 102) (1 82) (1 62) (1 42) (1 11)2

= 1 122 (1 102) (1 82) (1 62) (1 42) (1 22 121)

= 5041 + 1420 + 100 = 6561

  • 912 = 1 812 = 1 162(1 712 ) = 1 142 (1 612) = 1 122 (1 51)2

= 1 122 (1 102) (41)2 = 1 122 (1 102) (1 82) (1 31)2

= 1 122 (1 102) (1 82) (1 62) (1 21)2

= 1 122 (1 102) (1 82) (1 62) (1 42)(1 11)2

= 1 122 (1 102) (1 82) (1 62) (1 42) (1 11)2

= 1 122 (1 102) (1 82) (1 62) (1 42) (1 22 121)

= 6561 + 1620 + 100 = 8281

  • 1012 = 1 912 = 1 182(1 812) = 1 162(1 712 ) = 1 142 (1 612) = 1 122 (1 51)2

= 1 122 (1 102) (41)2 = 1 122 (1 102) (1 82) (1 31)2

= 1 122 (1 102) (1 82) (1 62) (1 21)2

= 1 122 (1 102) (1 82) (1 62) (1 42)(1 11)2

= 1 122 (1 102) (1 82) (1 62) (1 42) (1 11)2

= 1 122 (1 102) (1 82) (1 62) (1 42) (1 22 121)

= 8281 + 1820 + 100 = 10201

Edited by mathspassion
Link to comment
Share on other sites

Sorry but I haven't read to the end of your longish post but immediately I would say that this is merely an artifact of multiplication and nothing deeper:

 

011 x

011

----

001 (units multiplied)

010 (top unit times lower tens)

010 (lower unit time top tens)

100 (tens multiplied)

===

121

[Leading zeros added to make it align]

 

You will always get the pattern of the unit squared + the tens time unit doubled + the tens squared

 

ie

019 x

019

----

081

090

090

100

===

361

Link to comment
Share on other sites

It is also due to the "binomial theorem":
[math](x+ y)^n= \sum_{k=0}^n \begin{pmatrix}n \\ k\end{pmatrix} x^ky^{n-k}[/math]
Where [math]\begin{pmatrix}n \\ k\end{pmatrix}[/math] is the "binomial coefficient", [math]\frac{n!}{k!(n-k)!}[/math].
With x= y= 1 that becomes [math]2^n= \sum_{k=0}^\infty \begin{pmatrix}n \\ k\end{pmatrix}[/math]
and clearly the binomial coefficient is "symmetric":
[math]\begin{pmatrix}n \\ k \end{pmatrix}= \frac{n!}{k!(n-k)!}= \frac{n!}{(n- (n-k))!(n-k)!}= \begin{pmatrix}n \\ n-k\end{pmatrix}[/math]

Edited by Country Boy
Link to comment
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.