Jump to content

czarodziej_snow

Members
  • Posts

    10
  • Joined

  • Last visited

Posts posted by czarodziej_snow

  1. On 21.01.2018 at 3:34 AM, SilentSky23 said:

    This should be in relation to rotational physics. Now, say you have a rotating person. Would it be possible to change axis of rotation/change direction of rotation while rotating? For example, say the person is doing a head-to-toe twist, but goes from that to a cartwheel or a flipping rotation. Would that be possible? Why or why not?

    Of course it is possible for the rigid body to change the axis of rotation itself, for example, cats do it and they always fall on four legs, but it must be done in accordance with the laws of physics. This movement  describes the Euler equation of motion and the mechanism of occurrence of the internal moment of force presents this scheme.5b803ed7567d9_wewntrznasila.thumb.jpg.0e4322d4bc5b5d1e0eaea960fbf06d31.jpgribes

    How this moment of force works during the dzanibekowa effect shows this simulation

     

     

    Here is a change in angular velocities relative to body

     

     

  2. 22 hours ago, Bender said:

    Never mind, I misread. It is getting late.

    So in summary : what's new? The simulation looks nice, but you aren't exactly the first to make one of this well known and well documented effect.

     

    My simulations show a lot more of details which you will not see elsewhere, and angular acceleration or moment of force is a completely new approach to this issue

     

  3. 49 minutes ago, Bender said:

    I didn't go through all the details, but you made an error in this step. On the left hand side, you assume omega is constant, which makes the right hand side 0. 

    which exactly step?

    During the mechanics of rotation of the rigid body  angular velocity is constant only in three special cases only when it rotates exactly around one of the main axes of the moment of inertia in other cases, the vector is not stable in the body frame and inertial frame.  It shows my animation

     

    another simulation shows the same

    There was an error in my Euler patterns, I will try to fix it quickly

    How to edit a note?

    correction of Euler's equations

    Ix(dωx/dt)= (Iy - Izzωy

    Iy(dωy/dt)= (Iz - Ixzωx

    Iz(dωz/dt)= (Ix - Iyxωy

     

  4.    I am interested in the mechanics of rigid body rotation. I entered the subject very deeply, and from my calculations and conclusions it follows that, not everything is exactly that haw it is written in books and few details have hidden in present science . Of course, these are my conclusions and should be verified but no one did not get interested, and physicists are afraid of the subject, like the devil of holy water.

       I thought I might find people here with whom I could discuss the issue, but because the questions for I am looking answers can not be found in books, they only hear excuses. Unfortunately, the local community is just waiting for easy questions which answers can be found in books, and he has not been interested in searching for answers that have not yet been found.

       To better introduce you to the topic I prepared simulations showing rigid body rotation based on Poisnot solutions using the ellipsoid concept. Solutions in the sources which I have, it was very chaotically written but I finally managed to understand and sort it.

    What is matter?

       During the rotation of the rigid body, the moment of inertia is the most important thing. Each rigid body has three constant moments of inertia which is permanently attached to the solid frame. It means that in the body configuration, the moment of inertia is constant over time. Poinsot presented it in the form of an ellipsoid of inertia in the body configuration. It is interesting that, if we have different main moments of inertia and the body rotates near the middle moment of inertia, comes to the Dzibibekov effect that is, for spontaneous change of the instantaneous axis of rotation. There is a spontaneous change of the angular velocity and changes in the moment of inertia. These changes are not chaotic and predicted that angular velocity vector moves at the intersection of ellipsoid of angular momentum and energy ellipsoid. That's was written but how to understand ellipsoid of angular momentum when the angular momentum is constant over time?

    My solution is quite simple. Because angular momentum is constans he creates a sphere.

    L2=Ix2ωx2+ Iy2ωy2+ Iz2ωz2 =Lx2+ Ly2+L2z

    L=constans

     

    Energy is also constant over time and if we used it directly, we would get another sphere. Energy is

    E=Iω2/2

    Angular momentum is

    L=Iω

    we can now write energy as

    E=L2/2I

    It gives us an ellipsoid 2EI

    L2=2EIx+2EIy+2EIz

     

    Angular momentum is constans in the inertial frame, but is not must be constans relative to the rigid body. This sphere of angular momentum and ellipsoid 2EI are solid relative to the rigid body, so they will rotate with this body in the inertial system. Angular momentum vector is constans in inertial and always it's at the intersection this sphere and the ellipsoid. In rigid body frame this sphere and the ellipsoid they do not move but the angular momentum vector moves along their intersection.

    Analogously, we can determine the ellipsoid for the angular velocity vector

    Ω2=2E/Ix+2E/Iy+2E/Iz

    Ω2=(L/Ix)2+(L/Iy)2+(L/Iz)2
    Angular velocity vector moves along their intersection these ellipsoids. Everything is showing my animation.

    https://youtu.be/p8pwQ39Tx9A

     

    The rotation of the rigid body describes Euler's equations

    Ixx/dt)= (Iy - Izzωy

    Iyy/dt)= (Iz - Ixzωx

    Izz/dt)= (Ix - Iyxωy

       I do not know why no one did not see of the relations that resulted from them, ω/dt is definitely the vector of angular accelerations ɛ and Iɛ it is a moment of force. Important, I is the tensor of the moment of inertia, which very complicates calculations but I have pass through it and now I can use it effectively in simulations.

       There is a superstition that isolated bodies can not have inner moments of forces and internal angular accelerations, but Euler's equations deny it. I have heard a lot of opinion that such a moment of froce would have to be incompatible with the laws of physics, but I examined this moment of force and dont found nothing in it that would contradict any of the laws of Physics. These opinions is result from ignorance, lack of scientific approach and intuitive estimates, dont have nothing to do with the truth.

    I have proof though it is not yet complete.

    Conservation of linear angular momentum

    dL/dt=0                 (1)

    Angular momentum is

    L= Iω                  (2)

    use (1) and (2)

    d(Iω)/dt= ω(dI/dt) + Iɛ =0     (3)

    moment of force is

    M= Iɛ                     (4)

    We know that during the rigit body rotation mechanics, the moment of inertia changes over time I showed it in my simulation above . Changing (3)

    dI/dt=-M/ω              (5)

    we have a pattern for the inner moment of strength

    M=-ω(dI/dt)              (6)

    we count the derivative with dI/dt

    M=-ω(dmr^2)/dt             (7)

    the mass is constant, so

    M=-ωm(2r(dr/dt))=-2ωmrv         (8)

    momentum is

    p=mv                  (9)

    We have now

    M=-2ωrp        (10)

    Second law of Kepler

    dA/dt=r(dr/dt)/2= (r x v) /2 = (r x p)/2m             (11)

    S=dA/dt= constans                             (12)

    Angular momentum is

    L = r x p = r x mv                         (13)

    Use (11) and (12)

    r x v = 2S                                 (14)

    Angular momentum is

    L=m(r x v)=m2S=2mvr(sina)             (15)

    a - angle between r,v

    Use (15) to (8)

    M=-ωL              (16)

    and I found my guess

    M=-ω x L                 (17)

    Using the equation (17) I can effectively simulate the mechanics of rotation. At the end I sending the code in Vpython. How does this moment of force look shows my simulation.

    https://www.youtube.com/edit?o=U&video_id=8OnWhW1-15s

    It is only a fragment of my conclusions, there are still some details that still elude me but I'm on the best way to find them. If anyone would like to help or cooperate, I am open to any suggestions. You will find more simulations and details in simulations on my Youtube profile.

  5. 18 minutes ago, studiot said:

    Perhaps I should have said that omega 1, omega2 and omega 3 are the angular velocities about the 3 Euler axes.

    A, B and C are the positive constant moments of inertia about these axes.

    Without perturbation the system is stable.

    If we introduce even the slightest perturbation to omega 2 the instability you are modelling results.

    If we introduce that perturbation to omega 1 or 3 then something different happens.

    I was asking if your animation can show what happens then?

    What equations are you solving to generate the vectors?

    Euler's equations.

    Ix(dωx /dt) + (Iz - Iyzωy   = 0

    Iy(dωy /dt)+ (Ix - Izzωx = 0

    Iz(dωz /dt)+ (Iy - Ixxωy   = 0

    Omega must have minimum two no zero elements. If that hapen equations show you dω.

    Haw this vectors work in nointeria frame show difrent my animation.

     

     

     

     

  6. 21 hours ago, studiot said:

    In a perfect world rotation about any of the three Euler axes is stable, an governed by three non linear coupled differential equations.

    (BC)ω2ω3


    Bdω2dt=(CA)ω3ω1


    Cdω3dt=(AB)ω1ω2


    Where constants A < B < C

    Because of the couping the slightest perturbation of  ω2 will lead to regenerative instability of rotation about the intermediate axis as your vids show.

    The equation set can be linearised and the linearised equations set still exhibits this instability.

    My animation works on Euler's equations. In non-inertial frame I finded angular velocity vector and I rotate this frame in interial frame.  In this way, I finded the coordinates of the temporary axis of rotation.  And I repeat this step a lot time.  One step is a very small error but  Thousands of steps cause an error to occur. I know how to check those moments force, but I must find time.  I'm a very busy person.

     

    21 hours ago, studiot said:

    Would you like to explain how your animations improve on this?

    Also the above calculations show what happens if you introduce the perturbation into either ω1   or ω3

    Can you animations show this?

    What improve?  This animation shows simple properties this vectors. a=(v1-v0)/dt and F=am.  That's all.

    Sorry but I do not understand the rest.

     

  7. Hi I would like to present my new simulation rotated rigid ball.
    Brief introduction to the Dzanibek Effect



    When I learned to simulate the effect and study the secrets of vector relationships with no problem to finde speed vectors for points.


    Next step is finde acceleration. It is a=(v1-v0)/dt. To spread this vector I set the angle n of inclination of both vectors and line acceleration it is al=cosn*a. Centrifugal acceleration it is ad=a-al.


    Now it is easy to determine the force acting on the point. It is F=am. Now I set the angle m between force vector and main axis. Central force is Fc=cosm*F. Remaining component is forces creating a moment of force.


    Yellow- Velocity
    Red, lighbrown - acceleration and forces
    Green - line acceleration
    Light blue - centrifugal acceleration
    Pink - Central force
    Orange – forces give moment of force.

    My simulation is not perfect and gives errors of the order of 0.01.
    Sum of moments of forces give result max 0.01 but most likely this is a method error.
    https://m.salon24.pl/9236008c61194a8bfd80bc37832b8ae7,750,0,0,0.jpg

  8. The mechanics of rigid bodies describe the Euler equations.

    Ix(dωx /dt) + (Iz - Iyzωy   = 0

    Iy(dωy /dt)+ (Ix - Izzωx = 0

    Iz(dωz /dt)+ (Iy - Ixxωy   = 0

    Important is the difference in moments of inertia on the main axes and angular velocity vector components .

    After easy transformations we have

    Ixɛx = (Iy - Izzωy   

    Iyɛy = (Iz - Ixzωx

    Izɛz = (Ix - Iyxωy    

    Iωω = Iɛ = M - momentum forces

    Its easily visualize these vectors

     

     

    The problem is that Euler's equations work only in non-inertial systems.

     

     

  9. Hi

    Sorry for my language but I dont speak english very well and probably I have trouble understanding comments.

    Over a year ago Professor Jadczyk was interested me Dzanibekov's effect.

    https://www.youtube.com/watch?v=BGRWg4aV2mw

     

    Currently I can calculate and simulate a lot. I will use the equations because they are a universal language and they are understandable to all science on over the world.

     

    Vector product.

    a x b = c

     

    Perpendicular axis

    i ┴ j ┴ k

    Proportions of vectors
    c
    k=ai*bj
    ai=ck/bj
    bj=ck/ai

     

    The inverse of the vector.

    a(ax,ay,az)=√(ax2+ay2+az2)
    1/a=a/a2=(ax/a2, ay/a2, az/a2)

     

    Example

    d (1,1,1)    1/d (1/3, 1/3, 1/3)
    e (1,1,0)    1/e (1/2, 1/2, 0)
    f (1,0,0)    1/f (1,0,0)

     

    Easy vector product equations.

    c = a x b
    a = 1/b x c
    b = c x 1/a

     

    Vector product equations for velocity, angular velocity and position. These equations are correct only for a free point.

    v = ω x r = 1/s * m
    ω = 1/r x v = 1/m * m/s
    r = v x 1/ω = m/s * s

     

    In rigid body rotation usually Angular velocity is not stable.

    https://youtu.be/CAVXGDMbquk

     

    How to calculate temporary angular velocity for rigid body rotation?

    Rigid body elements

    m1x`(√2, √2, 0);       v1(0,0,-2)
    m2x`(-√2, -√2, 0);     v2(0,0,2)
    m3y`(-√2, √2, 0);      v3(0,0,-2)
    m4y`(√2, -√2, 0);      v4(0,0,2)

    m1,m2 is x` main axis. m3,m4 is y` main axis. The center of mas is the center of the coordinate system.

    We calculate angular velocity for main axis

    ωx`=(-√2/2, √2/2, 0)
    ωy`=(-√2/2, -√2/2, 0)

     

    These are components temporary angular velocity for rigid body rotation

    Ω = ωx` + ωy` =(√2, 0, 0)
     

    https://m.salon24.pl/051c2bf7373b20e081ac0f25ababa170,750,0,0,0.jpg

     

    How to calculate velocity?

    Property vector product:

    a x b = c ---> c=absinα

     

    If

    Ω (x,0,0) and r (x,y,0)

     

    this give

    ry┴Ω   i    rx║Ω
    v = Ω x ry

     

    Angular momentum for the free point

    L = r x p

     

    Angular momentum for rigid body show that equations using tensor moment of inertia.

    Lx= ωxΣmn(rn2-xn2) + ωyΣmnxnyn + ωzΣmnxnzn
    Ly= ωxΣmnynxn + ωyΣmn(rn2-yn2) + ωzΣmnynzn
    Lz= ωxΣmnznxn + ωyΣmnznyn + ωzΣmn(rn2-zn2)

     

    r is the position point to the center of mass.

     

    Easier equations using moment of inertia for main axis

    Ix=mxr2 + m-xr2;     Iy=myr2=m-yr2 

     

    Lx = (r1 x p1)x + (r2 x p2)-x
    Ly = (r3 x p3)y + (r4 x p4)-y
    Lz = (r5 x p5)z + (r6 x p6)-z
    L = Lx + Ly + Lz

     

    Centripetal acceleration ad for point.

    ad=rω2  --> rω=v
    a
    d=v2/r  --> v/r=ω
    a
    d=ωv

     

    ad║-r

     

    Vector product equations for centripetal acceleration

    ad = ω x v
    ω = 1/v x a
    d
    v =ad x 1/ω

     

    Equations temporary angular velocity for rigid body rotation

    Ω=ωx`+ωy`+ωz`=(1/v x ad)x` + (1/v x ad)y` + (1/v x ad)z`

     

    Centripetal forces  for point in rigid body rotation, three possibilities.

    First version

    F=am
    ω = 1/v x a
    d
    ω = 1/mv x mad
    ω = 1/p x Fd
    Fd = ω x p
    p = F
    d x 1/ω

     

    Second version

    Ω = (x, 0, 0)
    r = r
    x +ry = r┴ + r║
    F
    d=mω2 ry

     

    Third version

    Ω = (x, 0, 0)
    r = rx +ry = r┴ + r║
    Fd=mω2 r
    Fd=m(1/ry x v)2 r

     

    Everything shows my animation

    https://youtu.be/oz1uw9x13kA

     

    Another animation shows the angular acceleration vector for the effect

    https://youtu.be/exwM5bTuO6Q

    https://youtu.be/v2kwwzLA3aM

     

    Another animation shows the vectors in no inertial frame

    https://youtu.be/LZ9YwG9cVBE

     

    code for the first simulation Vpython.

     

    from visual import *

     

     

    mx=0.5 #masy x`,y`

    my=1.

     

    x1=1 #pozycja m1,m2 na osi x`

    y1=0

    z1=0

     

    x2=0 #pozycja m3,m4 na osi y`

    y2=1

    z2=0

     

    r=vector(x1,y1,z1) #promien

    R=mag(r)

    #print R

     

    W=vector(0.9,0,0) #omega

     

     

    v1=W.x*y1 #predkosci

    v2=W.x*-y1

    v3=W.x*y2

    v4=W.x*-y2

     

    p1=mx*v1 #ped

    p2=mx*v2

    p3=my*v3

    p4=my*v4

     

    ax=(v1*v1) #przyspieszenia a=(v^2)/r; r=1

    ay=(v3*v3)

     

    #print "v",v1,v2,v3,v4

     

     

    TIxx=(2*mx*((y1*y1)+(z1*z1)))+(2*my*((y2*y2)+(z2*z2))) #mx1 i mx2 --> 2*mx

    TIyy=(2*mx*((x1*x1)+(z1*z1)))+(2*my*((x2*x2)+(z2*z2))) #elementy tensora

    TIzz=(2*mx*((x1*x1)+(y1*y1)))+(2*my*((x2*x2)+(y2*y2)))

    TIxy=(2*mx*x1*y1)+(2*my*x2*y2)

    TIxz=(2*mx*x1*z1)+(2*my*x2*z2)

    TIyx=(2*mx*y1*x1)+(2*my*y2*x2)

    TIyz=(2*mx*y1*z1)+(2*my*y2*z2)

    TIzx=(2*mx*z1*x1)+(2*my*z2*x2)

    TIzy=(2*mx*z1*y1)+(2*my*z2*y2)

     

    Fdx=mx*W.x*W.x*y1 #sily dosrodkowe na osiach glownych z Fd=mW^2ry

    Fdy=my*W.x*W.x*y2

    #print "F", Fd1,Fd2

     

    Fdax=mx*ax #sily dosrodkowe na osiach glownych z F=ma

    Fday=my*ay

     

    #L=vector((W.x*TIxx-W.y*TIxy-W.z*TIxz),(-W.x*TIyx+W.y*TIyy-W.z*TIyz),(-W.x*TIzx-W.y*TIzy+W.z*TIzz))

    #print "W",W

     

    omega=arrow(axis=vector(W.x,W.y,0), color= color.blue, shaftwidth=0.05) #omega startowa

    #kret=arrow(axis=vector(0,0,0), color= color.red, shaftwidth=0.04)

    kret2=arrow(axis=vector(0,0,0),color=vector(1,0.4,0.4), shaftwidth=0.04)

    #kret2x=arrow(axis=vector(0,0,0),color=vector(1,1,0.3), shaftwidth=0.04)

    #kret2y=arrow(axis=vector(0,0,0),color=vector(1,1,0.3), shaftwidth=0.04)

    dv1=arrow(axis=vector(0,0,0), color=vector(0.3,0.6,0), shaftwidth=0.05) #przyspieszenie punktow

    dv2=arrow(axis=vector(0,0,0), color=vector(0.3,0.6,0), shaftwidth=0.05)

    dv3=arrow(axis=vector(0,0,0), color=vector(0.3,0.6,0), shaftwidth=0.05)

    dv4=arrow(axis=vector(0,0,0), color=vector(0.3,0.6,0), shaftwidth=0.05)

    dvg=arrow(pos=vector(0,1,0),axis=vector(0,0,0), color=vector(0.6,0.6,0), shaftwidth=0.05)

    dvd=arrow(pos=vector(0,-1,0),axis=vector(0,0,0), color=vector(0.6,0.6,0), shaftwidth=0.05)

     

    #omegax=arrow(axis=vector(0,0,0), color= vector(0,0,0.01), shaftwidth=0.02)

    #omegay=arrow(axis=vector(1,0,0), color= vector(0,0,0.01), shaftwidth=0.02)

     

    masa1x=sphere(pos=vector(x1,y1,0),radius=0.05) #bryla sztywna

    masa2x=sphere(pos=vector(-x1,-y1,0),radius=0.05)

    masa1y=sphere(pos=vector(x2,y2,0),radius=0.05)

    masa2y=sphere(pos=vector(-x2,-y2,0),radius=0.05)

    promien1=arrow(pos=masa2x.pos, axis=masa1x.pos-masa2x.pos, color= color.yellow, shaftwidth=0.005)

    promien2=arrow(pos=masa2y.pos, axis=masa1y.pos-masa2y.pos, color= color.yellow, shaftwidth=0.005)

     

    vm1x=arrow(pos=masa1x.pos, axis=vector(0,0,v1), shaftwidth=0.01) #wektory predkosci punktow

    vm2x=arrow(pos=masa2x.pos, axis=vector(0,0,v2), color=color.green, shaftwidth=0.01)

    vm1y=arrow(pos=masa1y.pos, axis=vector(0,0,v3), color=color.green, shaftwidth=0.01)

    vm2y=arrow(pos=masa2y.pos, axis=vector(0,0,v4), color=color.green, shaftwidth=0.01)

    #orbita1=ring(pos=vector(x1,0,0), axis=vector(1,0,0), radius=y1, thickness=0.01) #orbita

    os=arrow(pos=vector(-2,0,0), axis=vector(4,0,0),color=vector(0.3,0.3,0.3),shaftwidth=0.005) #os obrotu

     

     

     

    sila1=arrow(pos=masa1x.pos,axis=-vector(x1,y1,0)*Fdx, color= vector(1,1,0), shaftwidth=0.05) #wektory sil dosrodkowych punktow

    sila2=arrow(pos=masa1x.pos,axis=-vector(-x1,-y1,0)*Fdx, color= vector(1,1,0), shaftwidth=0.05)

    sila3=arrow(pos=masa1y.pos,axis=-vector(x2,y2,0)*Fdy, color= vector(1,1,0), shaftwidth=0.05)

    sila4=arrow(pos=masa1y.pos,axis=-vector(-x2,-y2,0)*Fdy, color= vector(1,1,0), shaftwidth=0.05)

    sumasilag=arrow(color= vector(0.8,0.5,0), shaftwidth=0.05) #suma sil dosrodkowych gora z Fd=mW^2ry

    sumasilad=arrow(color= vector(0.8,0.5,0), shaftwidth=0.05) #suma sil dosrodkowych dol z Fd=mW^2ry

    #sila1a=arrow(pos=masa1x.pos,axis=-vector(x1,y1,0)*Fdax, color= vector(1,1,0.5), shaftwidth=0.05) #wektory sil dosrodkowych punktow

    #sila2a=arrow(pos=masa1x.pos,axis=-vector(x1,y1,0)*Fdax, color= vector(1,1,0.5), shaftwidth=0.05) #wektory sil dosrodkowych punktow

    #sila3a=arrow(pos=masa1x.pos,axis=-vector(x1,y1,0)*Fday, color= vector(1,1,0.5), shaftwidth=0.05) #wektory sil dosrodkowych punktow

    #sila4a=arrow(pos=masa1x.pos,axis=-vector(x1,y1,0)*Fday, color= vector(1,1,0.5), shaftwidth=0.05) #wektory sil dosrodkowych punktow

    #sumasilga=arrow(color= vector(0.8,0.5,0), shaftwidth=0.05) #suma sil dosrodkowych dol F=am

    #sumasilda=arrow(color= vector(0.8,0.5,0), shaftwidth=0.05) #suma sil dosrodkowych dol F=am

     

     

     

    #sumaF=arrow(axis=-vector(0,Fd1+Fd2,0), color= vector(1,0.5,0), shaftwidth=0.03)

     

     

     

    t=0

     

     

    while t<20:

    rate(3)

     

     

    # print t,L

    # print TIxx-TIxy-TIxz,-TIyx+TIyy-TIyz,-TIzx-TIzy+TIzz

    # print TIxx,TIxy,TIxz," I ",TIyx,TIyy,TIyz," I ",TIzx,TIzy,TIzz

     

    x1=x1-0.1 #nowe pozycje punktow

    y1=sqrt(1-(x1*x1))

    y2=y2-0.1

    x2=-sqrt(1-(y2*y2))

     

    v1=W.x*y1 # v = W x ry

    v2=W.x*-y1

    v3=W.x*y2

    v4=W.x*-y2

     

    ov1=1/v1 #1/v

    ov2=1/v2

    ov3=1/v3

    ov4=1/v4

    # print t,v1*ov1

     

    r1=vector(x1,y1,0) #promienie

    r2=vector(-x1,-y1,0)

    r3=vector(x2,y2,0)

    r4=vector(-x1,-y1,0)

    # print mag(r1),mag(r2),mag(r3),mag(r4)

     

    p1=mx*v1 #ped

    p2=mx*v2

    p3=my*v3

    p4=my*v4

     

    op1=1/p1 #1/p

    op2=1/p2

    op3=1/p3

    op4=1/p4

    # print "v",v1,v2,v3,v4, "p",p1,p2,p3,p4

     

    wx=vector(y1*v1,-(x1*v1),0) # wx` = r x v12; r=1

    wy=vector(y2*v3,-(x2*v3),0) # wy` = r x v34; r=1

    Wk=wx+wy # omega koncowa Wk=wx`+wy`

    # print t, "Ws=", W, "Wk=", Wk

     

    a1=(v1*v1)/mag(r1) #przyspieszenia a=(v^2)/r; r=1

    a2=(v2*v2)/mag(r2)

    a3=(v3*v3)/mag(r3)

    a4=(v4*v4)/mag(r4)

    a1v=vector(x1,y1,0)*-a1 #wektory przyspieszen

    a2v=vector(-x1,-y1,0)*-a2

    a3v=vector(x2,y2,0)*-a3

    a4v=vector(-x2,-y2,0)*-a4

    # a1r=-r1*(v1*v1)

    # f1am=a1*mx

    # print t, f1am

    # print t,a1,a2

     

    if t<10: #suma par przyspieszen dosrodkowych gora, dol z Fd=mW^2ry

    adg=a1v+a3v

    add=a2v+a4v

    else:

    adg=a1v+a4v

    add=a2v+a3v

     

    Wax=vector(-ov1*a1v.y,ov1*a1v.x,0) # w = 1/v x a

    Way=vector(-ov3*a3v.y,ov3*a3v.x,0)

    Wa=Wax+Way #W=wx`+wy`

    # print t, Wa

     

     

    # r1=sqrt((x1*x1)+(y1*y1))

     

    TIxx=(2*mx*((y1*y1)+(z1*z1)))+(2*my*((y2*y2)+(z2*z2))) #mx1 i mx2 --> 2*mx

    TIyy=(2*mx*((x1*x1)+(z1*z1)))+(2*my*((x2*x2)+(z2*z2)))

    TIzz=(2*mx*((x1*x1)+(y1*y1)))+(2*my*((x2*x2)+(y2*y2)))

    TIxy=(2*mx*x1*y1)+(2*my*x2*y2)

    TIxz=(2*mx*x1*z1)+(2*my*x2*z2)

    TIyx=(2*mx*y1*x1)+(2*my*y2*x2)

    TIyz=(2*mx*y1*z1)+(2*my*y2*z2)

    TIzx=(2*mx*z1*x1)+(2*my*z2*x2)

    TIzy=(2*mx*z1*y1)+(2*my*z2*y2)

     

    L=vector((W.x*TIxx-W.y*TIxy-W.z*TIxz),(-W.x*TIyx+W.y*TIyy-W.z*TIyz),(-W.x*TIzx-W.y*TIzy+W.z*TIzz))

     

    if y1<0: #wartosc sily dosrodkowe Fd=mW^2ry

    Fdx=mx*W.x*W.x*y1

    else:

    Fdx=-mx*W.x*W.x*y1

     

    if y2<0:

    Fdy=my*W.x*W.x*y2

    else:

    Fdy=-my*W.x*W.x*y2

    # print t, Fdy, x2,y2

     

    Lpr1=vector(y1*p1,-x1*p1,0) # L = r x p

    Lpr2=vector(-y1*p2,x1*p2,0)

    Lpr3=vector(y2*p3,-x2*p3,0)

    Lpr4=vector(-y2*p4,x2*p4,0)

    Lprx=Lpr1+Lpr2

    Lpry=Lpr3+Lpr4

    Lpr=Lprx+Lpry #suma kretow

    # print t, L-Lpr

     

    Fd1=vector(x1,y1,0)*Fdx #wektory sil dosrodkowch z Fd=mW^2ry

    Fd2=vector(-x1,-y1,0)*Fdx

    Fd3=vector(x2,y2,0)*Fdy

    Fd4=vector(-x2,-y2,0)*Fdy

     

    if t<10: #suma par sil dosrodkowych gora, dol z Fd=mW^2ry

    Fdg=Fd1+Fd3

    Fdd=Fd2+Fd4

    else:

    Fdg=Fd1+Fd4

    Fdd=Fd2+Fd3

     

    Fd1a=a1v*mx #F=am

    Fd2a=a2v*mx

    Fd3a=a3v*my

    Fd4a=a4v*my

     

    WFpx=vector(-op1*Fd1a.y,op1*Fd1a.x,0) #w = (1/p) x F

    WFpy=vector(-op3*Fd3a.y,op3*Fd3a.x,0)

    WFp=WFpx+WFpy

    # print t, WFp, W

     

    if t<10: #suma par sil dosrodkowych gora, dol z F=ma

    Fdag=Fd1a+Fd3a

    Fdad=Fd2a+Fd4a

    else:

    Fdag=Fd1a+Fd4a

    Fdad=Fd2a+Fd3a

    print t,Fdag, Fdad

     

     

    # kret.axis=vector(L.x,L.y,L.z+0.01)

    kret2.axis=vector(Lpr.x,Lpr.y,Lpr.z+0.01)

    # kret2x.axis=vector(Lprx.x,Lprx.y,Lprx.z+0.01)

    # kret2y.axis=vector(Lpry.x,Lpry.y,Lpry.z+0.01)

    masa1x.pos=vector(x1,y1,0)

    masa2x.pos=vector(-x1,-y1,0)

    masa1y.pos=vector(x2,y2,0)

    masa2y.pos=vector(-x2,-y2,0)

    promien1.pos=masa2x.pos

    promien1.axis=masa1x.pos-masa2x.pos

    promien2.pos=masa2y.pos

    promien2.axis=masa1y.pos-masa2y.pos

    vm1x.pos=masa1x.pos

    vm1x.axis=vector(0,0,v1)

    vm2x.pos=masa2x.pos

    vm2x.axis=vector(0,0,v2)

    vm1y.pos=masa1y.pos

    vm1y.axis=vector(0,0,v3)

    vm2y.pos=masa2y.pos

    vm2y.axis=vector(0,0,v4)

    # orbita1.pos=vector(x1,0,0)

    # orbita1.radius=y1

    # omegax.axis=wx

    # omegay.axis=wy

     

    # dv1.pos=vector(x1,y1,0)

    # dv1.axis=vector(a1v.x,a1v.y,a1v.z)

    # dv2.pos=vector(-x1,-y1,0)

    # dv2.axis=vector(a2v.x,a2v.y,a2v.z)

    # dv3.pos=vector(x2,y2,0)

    # dv3.axis=vector(a3v.x,a3v.y,a3v.z)

    # dv4.pos=vector(-x2,-y2,0)

    # dv4.axis=vector(a4v.x,a4v.y,a4v.z)

    # dvg.axis=vector(adg.x,adg.y,adg.z)

    # dvd.axis=vector(add.x,add.y,add.z)

     

    sila1.pos=vector(x1,y1,0)

    # sila1.axis=vector(0,-mag(Fd1),0)

    sila1.axis=vector(Fd1.x,Fd1.y,Fd1.z)

    sila2.pos=vector(-x1,-y1,0)

    # sila2.axis=vector(0,mag(Fd2),0)

    sila2.axis=vector(Fd2.x,Fd2.y,Fd2.z)

    sila3.pos=vector(x2,y2,0)

    sila3.axis=vector(Fd3.x,Fd3.y,Fd3.z)

    sila4.pos=vector(-x2,-y2,0)

    sila4.axis=vector(Fd4.x,Fd4.y,Fd4.z)

     

    # if t<10:

    # sila3.axis=vector(0,-mag(Fd3),0)

    # sila4.axis=vector(0,mag(Fd4),0)

    # else:

    # sila3.axis=vector(0,mag(Fd3),0)

    # sila4.axis=vector(0,-mag(Fd4),0)

     

    sumasilag.axis=vector(Fdg.x,Fdg.y,Fdg.z)

    sumasilad.axis=vector(Fdd.x,Fdd.y,Fdd.z)

     

    # sila1a.pos=vector(x1,y1,0)

    # sila1a.axis=vector(Fd1a.x,Fd1a.y,Fd1a.z)

    # sila2a.pos=vector(-x1,-y1,0)

    # sila2a.axis=vector(Fd2a.x,Fd2a.y,Fd2a.z)

    # sila3a.pos=vector(x2,y2,0)

    # sila3a.axis=vector(Fd3a.x,Fd3a.y,Fd3a.z)

    # sila4a.pos=vector(-x2,-y2,0)

    # sila4a.axis=vector(Fd4a.x,Fd4a.y,Fd4a.z)

    # sumasilga.axis=vector(Fdag.x,Fdag.y,Fdag.z)

    # sumasilda.axis=vector(Fdad.x,Fdad.y,Fdad.z)

    # sumaF.axis=sila1.axis+sila2.axis

     

    # LxF=sumaF.axis.x*L.x+sumaF.axis.y*L.y+sumaF.axis.z*L.z

    # print t,"L x F",LxF

     

    t=t+1

×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.