Jump to content


  • Posts

  • Joined

  • Last visited

About deesuwalka

  • Birthday 10/17/1994

Profile Information

  • Favorite Area of Science

deesuwalka's Achievements


Quark (2/13)



  1. Use percent calculator- http://www.math.com/students/calculators/source/3percent.htm
  2. [latex] \int\limits^2_0 \dfrac{x^2}{x^2-2x+2} dx [/latex] [latex] =\int\limits^2_0 \dfrac{x^2-2x+2+2x-2}{x^2-2x+2} dx [/latex] [latex] =\int\limits^2_0 1+ \dfrac{2x-2}{x^2-2x+2} dx [/latex] [latex] =\int\limits^2_0 dx+\int\limits^2_0 \dfrac{2x-2}{x^2-2x+2} dx [/latex] Let [latex] t=x^2-2x+2 [/latex] [latex] dt=(2x-2)dx [/latex] [latex] =\bigg[x\bigg]^2_0+\int\limits^2_0\dfrac{dt}{t} [/latex] [latex] =2+\bigg[\ln\,t\bigg]^2_0\;\;\implies\bigg[\ln(x^2-2x+2)\bigg]^2_0 [/latex] [latex] =2+\bigg[\ln\,2-\ln\,2\bigg] [/latex] [latex] =2+0=2 [/latex]
  3. Here is the solution- [latex] -8=\dfrac{3}{19}n [/latex] Now, multiply both sides by [latex] 19 [/latex] [latex] -8\times 19=\not19 \times\dfrac{3}{\not19}n [/latex] [latex] -152=3n [/latex] Now, divide both sides by [latex] 3 [/latex] [latex] \dfrac{-152}{3}=\dfrac{3n}{3} [/latex] [latex] \dfrac{-152}{3}=n [/latex]
  4. You have to switch the [latex]x[/latex] and [latex]y[/latex], and then solve for [latex]y[/latex]. [latex]y=x^7+x^5 [/latex] [latex]x=y^7+y^5 [/latex] [latex]x=y^5(y^2+1) [/latex] I think it can't be solved farther.
  5. Right, there are millions of books available. I think you should prefer online study, there are many sites which help you https://www.khanacademy.org/ http://www.mathsisfun.com/) http://www.actucation.com/
  6. [latex] \frac{x+y}{x-y}\times\frac{x-y}{x+y} [/latex] [latex] =\frac{\not x+\not y}{\not x-\not y}\times\frac{\not x-\not y}{\not x+\not y} [/latex] [latex]= 1 \times 1[/latex] [latex]= 1 [/latex]
  7. We can read the equations three types, [latex] \frac{x- x_{1} }{ x_{2}- x_{1} } =\frac{y- y_{1} }{ y_{2}- y_{1} } [/latex] [latex] \frac{x- x_{1} }{ x_{2}- x_{1} } =\frac{z- z_{1} }{ z_{2}- z_{1} } [/latex] [latex] \frac{y- y_{1} }{ y_{2}- y_{1} }=\frac{z- z_{1} }{ z_{2}- z_{1} } [/latex] So, I think it would be 3 equations.
  8. Use order of operation, i.e.,PEMDAS (Parenthesis, Exponent, Multiplication, Division, Addition, Subtraction) [latex] 36\div 6(2+2+2)= ? [/latex] First, Parenthesis- [latex] =36\div6(6) [/latex] Now, between multiplication and division, we apply operation which comes first, here division comes first so we apply division- [latex]= 6(6) [/latex] Now, applying multiplication- [latex]= 6(6)\;\;\implies 6\times6=36 [/latex] I hope it' ll help.
  9. We substitute [latex] \sqrt{9-x^2} [/latex] by [latex] x= 3sin\theta [/latex] because a trigonometric substitution</a> helps us to get a perfect square under the radical sign. This simplifies the integrand function.http://www.actucation.com/calculus-2/indefinite-integration/basic-methods-of-integration/integration-by-substitution-of-trigonometric-functions Now, we can simplified it easily, [latex] \int\sqrt{9-x^2}\;\;\implies\int\sqrt{3^2-x^2} [/latex] [latex] \int\sqrt{3^2-x^2}\;\implies\sqrt{3^2-(3sin\theta)^2} [/latex] [latex] =\sqrt{9-9sin^2\theta} [/latex] [latex] \sqrt{9-9sin^2\theta}\;\;\implies\sqrt{9(1-sin^2\theta)}\;\;\implies\sqrt{9cos^2\theta}\;=\;\int 3cos\theta [/latex] I hope it' ll help.
  10. You can simplify it easily, [latex] \frac{48}{2y} [/latex] Write this as, [latex] \frac{48}{2}\times\frac{1}{y} [/latex] Now, simply divide 48 by 2 and then multiply, [latex] 24\times\frac{1}{y}=\frac{24}{y} [/latex] I hope it' ll help.
  11. 1. It's not an even number because it ends with 1, it's an odd number 3. It's not a prime number because it's divisible by 1,111,111 other than 1
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.