Jump to content

Infinitesimal Circular Motion generating Zeeman Effects and Spin-Orbit Coupling

Featured Replies

[math]\int \int \int_V \nabla \times F \cdot dV = \int \int_S F \cdot dS[/math]


Stokes theorem states


[math]\int \int_{S} \nabla \times F \cdot dS = \oint_{\partial S} F \cdot dr[/math]


Greens theorem is a special case of Stokes theorem.


force is


[math]F = \frac{\partial U(r)}{\partial r}[/math]


substitution gives


[math]\int \int_{S} \nabla \times F \cdot dS = \oint_{\partial S} \frac{\partial U(r)}{\partial r} \cdot dr[/math]


As you can see it has dimensions of energy.


Consider the magnetic field now


[math]B = \frac{\hbar}{emc^2} \frac{1}{r}\frac{\partial U(r)}{\partial r}[/math]


Plugging in only part of the magnetic field expression [math]\frac{\hbar}{emc^2} \frac{1}{r}[/math]


[math]\int \int_{S} \frac{\hbar}{emc^2} \frac{1}{r} \cdot [\nabla \times F \cdot dS] = \oint_{\partial S} \frac{\hbar}{emc^2} \frac{1}{r} \frac{\partial U(r)}{\partial r} \cdot dr[/math]


working from the last equation, performing the integral over the volume this time will yield



[math]\int \int \int_{V} \frac{\hbar}{emc^2} \frac{1}{r} \cdot [\nabla \times F \cdot dV] = \oint_{\partial S} \frac{\hbar}{emc^2} \frac{1}{r} \frac{\partial U(r)}{\partial r} \cdot dS[/math]


Since this is just essentially a magnetic field times a surface, we have a magnetic flux


[math]\Phi = \int \int_S B \cdot dS = \int \int \int_{V} \frac{\hbar}{emc^2} \frac{1}{r} \cdot [\nabla \times F \cdot dV] = \oint_{\partial S} \frac{\hbar}{emc^2} \frac{1}{r} \frac{\partial U(r)}{\partial r} \cdot dS[/math]



we should obtain a quantization



[math]\hbar = e\Phi = \frac{e}{2\pi} \int \int_S B \cdot dS = \frac{1}{2\pi} \int \int \int_{V} \frac{\hbar}{mc^2} \frac{1}{r} \cdot [\nabla \times F \cdot dV] = \frac{1}{2\pi}\oint_{\partial S} \frac{\hbar}{mc^2} \frac{1}{r} \frac{\partial U(r)}{\partial r} \cdot dS[/math]



It should be noted that the Gauss law for magnetism implies that our flux' date=' if over a closed surface [math']S[/math] is zero:



[math]\Phi = \int \int_S B \cdot dS = \int \int \int_{V} \frac{\hbar}{emc^2} \frac{1}{r} \cdot [\nabla \times F \cdot dV] = \oint_{\partial S} \frac{\hbar}{emc^2} \frac{1}{r} \frac{\partial U(r)}{\partial r} \cdot dS = 0[/math]



From this equation, we can rearrange to find [math]\frac{dS}{dV}[/math] which is a length squared term over a length cubed term, which yields an inverse length we will call the radius, which will imply an equation for magnetism of the form:


[math]\mathbf{B} = \int \int \int_{V} \frac{\hbar}{emc^2} \cdot [\nabla \times F][/math]


(we will show why soon). We can compare the physics of this equation with another magnetic term


[math]\mathbf{B} = \frac{\hbar}{emc^2} \frac{1}{r}\frac{\partial U(r)}{\partial r}[/math]



[math]\int \int \int_{V} \frac{\hbar}{emc^2} \frac{1}{r} \cdot [\nabla \times F \cdot dV] = \oint_{\partial S} \frac{\hbar}{emc^2} \frac{1}{r} \frac{\partial U(r)}{\partial r} \cdot dS[/math]



divide volume



[math]\int \int \int_{V} \frac{\hbar}{emc^2} \frac{1}{r} \cdot [\nabla \times F] = \oint_{\partial S} \frac{\hbar}{emc^2} \frac{1}{r} \frac{\partial U(r)}{\partial r} \cdot \frac{dS}{dV}[/math]



Surface over volume is equivalent to [math]\frac{dS}{dV} \equiv \frac{r^2}{r^3} = \frac{1}{r}[/math] so we have



[math]\int \int \int_{V} \frac{\hbar}{emc^2} \frac{1}{r} \cdot [\nabla \times F] = \oint_{\partial S} \frac{\hbar}{emc^2} \frac{1}{r^2} \frac{\partial U(r)}{\partial r}[/math]



We have two terms of the inverse on both sides we can cancel as well to give us a new statement and proves the assertion above of a magnetic field equation:



[math]\mathbf{B} = \frac{\hbar}{emc^2} \cdot [\nabla \times F] = \frac{\hbar}{emc^2} \frac{1}{r} \frac{\partial U(r)}{\partial r}[/math]



And in fact, by knowing the relationship of the potential [math]\mathbf{A}[/math] with the magnetic field as



[math]\mathbf{B} = \nabla \times \mathbf{A}[/math]



then the inverse operator is acting on the magnetic field in an analagous way to the circular gauge [math]\mathbf{A} = \mathbf{B} \times r[/math], as



[math]\mathbf{A} = (\nabla \times)^{-1}\mathbf{B} = \frac{\hbar F}{emc^2} = (\nabla \times)^{-1}\frac{\hbar}{emc^2} \frac{1}{r}\frac{\partial U(r)}{\partial r}[/math]



The term [math]\frac{\hbar F}{emc^2}[/math] is a bit obscure - what is it? The force over energy can be though of as the inverse of the energy divided by a force which is


[math]\frac{E}{F} = \frac{1}{2} \frac{v^2}{a}[/math]


So


[math]F = \frac{E}{\frac{1}{2} v t} = \frac{2E}{v t}[/math]


So Force is the twice rate of change of Energy with respect to the velocity multiplied by time.


What's the inverse of


[math]\frac{E}{F} = \frac{1}{2} \frac{v^2}{a}[/math]


simplify, rearrange. Simple, gives:



[math]\frac{F}{E} = \frac{2a}{v^2}[/math]



This gives us the relationship


[math]\frac{2a \hbar }{e c^2}[/math]


and you can simplify this all the way now, by noticing the action is an angular momentum times a length term, we finally have



[math]\frac{2Ma c R}{e c^2} = \frac{2F R}{e c} = \frac{2mc^2}{e c} = \frac{2mc}{e} = \frac{2p}{e}[/math]



It may be of interest to note for any further investigations, that this has a dimension of rigidity [math]\mathbf{R}[/math] we can be shown via the equation:



[math]\mathbf{R} = \mathbf{B} r_g = \frac{p}{e}[/math]



where [math]r_g[/math] is the gyroradius (the radius associated to circular motion). It becomes more obvious that



[math]\mathbf{A} = (\nabla \times)^{-1}\mathbf{B} = \frac{\hbar F}{emc^2} = (\nabla \times)^{-1}\frac{\hbar}{emc^2} \frac{1}{r}\frac{\partial U(r)}{\partial r}[/math]



... Is right, when you consider the momentum is in fact the electrokinetic momentum given by [math]e\mathbf{A} = p[/math]. Now it seems a bit strange to me I have one source claiming momentum over charge is a rigidity - but those dimensions work out when you notice [math]\mathbf{A}[/math] has the same dimensions of [math]\frac{p}{e}[/math] in face of the electrokinetic momentum which is known as [math]e\mathbf{A} = p[/math]. Anyway moving on.



[math]]\mathbf{B} = \frac{\hbar}{emc^2} \cdot [\nabla \times F] = \frac{\hbar}{emc^2} \frac{1}{r} \frac{\partial U(r)}{\partial r}[/math]



rearranging gives



[math]e\mathbf{B} = \frac{\hbar}{mc^2} \cdot [\nabla \times F] = \frac{\hbar}{mc^2} \frac{1}{r} \frac{\partial U(r)}{\partial r}[/math]



relaxing all but primary action terms to the other notations, [math]L[/math] or [math]S[/math], we have distributing the action and then dividing a mass we have now a Zeeman energy interaction term, which will then justify the appearance of a new term in the equation


[math]eR \mathbf{E} - \frac{e\mathbf{B}\hbar}{m} = \frac{L \cdot S}{m^2c^2} \cdot [\nabla \times F] = \frac{L \cdot S}{m^2c^2} \frac{1}{r} \frac{\partial U(r)}{\partial r}[/math]


Two equations were of particular interest as:


[math]eR \mathbf{E} - \frac{e\mathbf{B}\hbar}{m} = \frac{L \cdot S}{m^2c^2} \cdot [\nabla \times F] = \frac{L \cdot S}{m^2c^2} \frac{1}{r} \frac{\partial U(r)}{\partial r}[/math]


We didn't have to do much to get from



[math]\mathbf{B} = \frac{\hbar}{emc^2} \cdot [\nabla \times F] = \frac{\hbar}{emc^2} \frac{1}{r} \frac{\partial U(r)}{\partial r}[/math]



We can change the central potential energy [math]U(r)[/math] for a screened Coulomb potential (aka. the Yukawa Potential) and this would give



[math]eR \mathbf{E} - \frac{e\mathbf{B}\hbar}{m} = \frac{L \cdot S}{m^2c^2} \cdot [\nabla \times F] = \frac{L \cdot S}{m^2c^2} \frac{1}{r} \frac{Gm}{r^2} e^{-kr}[/math]



This gives us something alternative to work with. It's not unusual to find a Yukawa term, in a central potential.



A centripetal force is


[math]F = m \omega^2 R[/math]


In which [math]\omega[/math] is the angular velocity.


Equating Newtons classical gravitational force equation with the clasical centripetal force we have


[math]\frac{Gm^2}{R^2} = m \omega^2 R[/math]


simplifying and rearranging we have the term


[math]\omega^2 = \frac{Gm}{R^3}[/math]


which simplifies the term [math]\frac{1}{r} \frac{Gm}{r^2}[/math], so we replace and we have


[math]eR \mathbf{E} - \frac{e\mathbf{B}\hbar}{m} = \frac{L \cdot S}{m^2c^2} \cdot [\nabla \times F] = \frac{L \cdot S}{m^2c^2} \omega^2 e^{-kr}[/math]


we found:


[math]eR \mathbf{E} - \frac{e\mathbf{B}\hbar}{m} = \frac{L \cdot S}{m^2c^2} \cdot [\nabla \times F] = \frac{L \cdot S}{m^2c^2} \frac{1}{r} \frac{\partial U(r)}{\partial r}[/math]


And I showed the correct derivation for the second part as


[math]\omega^{2} = \frac{L^2}{m^2R^4} = \frac{1}{mR} \frac{\partial U}{\partial r}[/math]


multiply through by mass we have


[math]m \omega^{2} = \frac{L^2}{mR^4} = \frac{1}{R} \frac{\partial U}{\partial r}[/math]



Now, in other previous equations, I was able to derive the following:


[math]e\mathbf{B}r^2 = mvR = L[/math]


and


[math]e\mathbf{B} = \frac{L}{R^2}[/math]


and to match this with


[math]m \omega^{2} = \frac{L^2}{mR^4} = \frac{\partial U}{r \partial r}[/math]


distribute an action term


[math]e\mathbf{B} \hbar = \frac{L^2}{R^2}[/math]


dividing off [math]mR^2[/math] gives


[math]\frac{e\mathbf{B}\hbar}{mR^2} = \frac{L^2}{mR^4}[/math]


which now fits this term:


[math]\frac{L^2}{mR^4} = \frac{\partial U}{r \partial r}[/math]


Using the correct substitution for [math](1/r \cdot U/r)[/math] now, which is [math]\frac{e\mathbf{B}\hbar}{mR^2}[/math], substitution is now


[math]eR \mathbf{E} - \frac{e\mathbf{B}\hbar}{m} = \frac{L \cdot S}{m^2c^2} \cdot [\nabla \times F] = \frac{L \cdot S}{m^2c^2} \frac{1}{r} \frac{\partial U(r)}{\partial r} = \frac{L \cdot S}{m^2c^2}\frac{e\hbar}{mR^2}[ \nabla \times \mathbf{A}][/math]


where [math]\nabla \times \mathbf{A}[/math] is the circular gauge, equivalent of magnetic field.

!

Moderator Note

 

you are Reiku, Gareth Lee Meredith, Gavin Meredith, QuantumClue, Graviphoton and many other noms de plume. You have already been banned on this site on numerous occasions - the opening of sockpuppet accounts is also not allowed.

Thread locked. Account Closed.

 

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.