Jump to content

Blog post: ajb: On curves and jets of curves on supermanifolds

Featured Replies

358365339_5c884a527b_m.jpg

My work on curves and higher tangent bundles on supermanifolds has now been published as "On curves and jets of curves on supermanifolds", Archivum mathematicum, Volume 50 (2014), No. 2.

 

Abstract

In this paper we examine a natural concept of a curve on a supermanifold and the subsequent notion of the jet of a curve. We then tackle the question of geometrically defining the higher order tangent bundles of a supermanifold. Finally we make a quick comparison with the notion of a curve presented here are other common notions found in the literature.

------------------------------------------------------

 

The main idea was to try to follow the classical definitions of a curve, jets of curves at a point and the geometric or kinematic definition of higher tangent bundles. One of the complications in the superworld is that supermanifolds are not just set theoretical objects. To overcome this the more categorical set-up of the "functor of points" and "internal Homs" is needed.

 

I posted a little about this before here.

 

 

 

 


Read and comment on the full post

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.