Jump to content

Blog post: swansont: A New Species of SQUID

Featured Replies

Viewpoint: A SQUID Analog with a Bose-Einstein Condensate

 

How can an ultracold gas act like a dc-SQUID? The Josephson effect relies on the sinusoidal nature of the relation between the current that flows and the relative phase that exists across the junction. In conventional dc-SQUIDs the flow is an electric current, whereas in BECs it is a mass current, and the relative phase is the difference in phase factors of the wave function on either side of the junction. In these macroscopic quantum systems, the relative phase evolves in time in response to the applied potential differences (voltage difference for superconductors, pressure and temperature differences for superfluid helium, and population difference between the two condensates for BECs). A constant potential difference, for example, leads to a relative phase that increases linearly in time, and through the sinusoidal current-phase relation, this then gives rise to an oscillating current. The nonlinear current-phase relation is a key signature of the leakage and the weak coupling of the two macroscopic wave functions.

 


Read and comment on the full post

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.