Jump to content

Dirac electrons generate Dirac positrons ?

Featured Replies

http://en.wikipedia.org/wiki/Dirac_equation#Comparison_with_the_Pauli_theory

 

[math] \left( E - q \Phi \right) \Psi_+ - c \vec{\sigma}\circ\left(\hat{p}-q \vec{A}\right) \Psi_- = m c^2 \Psi_+[/math]

[math] - \left( E - q \Phi \right) \Psi_- + c \vec{\sigma}\circ\left(\hat{p}-q \vec{A}\right) \Psi_+ = m c^2 \Psi_-[/math]

 

If no anti-matter exists, i.e. [math]\Psi_- = 0[/math], then matter must exist in a "super-conducting state", to wit [math]\left( \vec{p} - q \vec{A} \right) = 0[/math].

 

So, oppositely, if matter does not propagate in such a "super-conducting BCS-similar state", then any residual [math]c\vec{\sigma}\circ\left(\hat{p}-q\vec{A}\right)\Psi_+ \ne 0[/math] will begin to generate anti-matter wave-functions [math]\Psi_- \ne 0[/math].

 

Can such solutions, seemingly representing matter-generated anti-matter wave-functions, be considered some sort of "friction", between the matter momentum [math]\vec{p}[/math], and the electro-magnetic momentum [math]q\vec{A}[/math] that the matter "should" have ? Could i make an analogy, to matter entrained in a flowing fluid, such that if the matter moves with some speed different from the bulk fluid flow, then "friction" and "vortices" and "eddy currents" and such are generated around it ? If so, then could some sort of "electro-magnetic drag", between moving matter, and the vector potential field in which said matter is immersed, conceivably create anti-matter ??

 

Note that the spin-axis [math]\left( \hat{z} \right)[/math] seems "special", since, if [math]D_{\mu} \equiv \hat{p}_{\mu} - q \vec{A}_{\mu}[/math]

 

[math]\begin{bmatrix} c D_z & c \left( D_x - \imath D_y \right) \\ c \left( D_x + \imath D_y \right) & - c D_z \end{bmatrix} \Psi_+ = \begin{bmatrix} E + mc^2 - q \Phi & 0 \\ 0 & E + mc^2 - q \Phi \end{bmatrix} \Psi_-[/math]

 

so that only the spin-axis derivative couples to the anti-matter (may the non-spin axes derivatives be non-zero?).

  • Author

[math] \left( E - q \Phi \right) \Psi_+ - c \vec{\sigma}\circ\left(\hat{p}-q \vec{A}\right) \Psi_- = m c^2 \Psi_+[/math]

[math] - \left( E - q \Phi \right) \Psi_- + c \vec{\sigma}\circ\left(\hat{p}-q \vec{A}\right) \Psi_+ = m c^2 \Psi_-[/math]

 

If, for each component, of the matter spinor, [math]\Psi_+ \rightarrow \Psi_+' e^{- \imath \frac{m c^2}{\hbar}t}[/math], then [math]\hat{E} \Psi_+ = e^{-\imath \frac{m c^2}{\hbar}t} \hat{E} \Psi_+' + m c^2 \Psi_+[/math]. So, seemingly, the Dirac equation is (nearly) reducible to that of a ("pseudo-")massless particle.

 

Next, re-arranging terms, for the matter spinor, w/o any vector potential:

 

[math]\hat{E} \Psi_+ = c \vec{p} \circ \vec{\sigma} \Psi_- + m c^2 \Psi_+ + q \Phi \Psi_+[/math]

 

comparison to the equivalent Schrodinger equation (including the oft-omitted rest-mass-energy term):

 

[math]\hat{E} \Psi_+ = \frac{1}{2m} \vec{p} \circ \vec{p} \Psi_+ + m c^2 \Psi_+ + q \Phi \Psi_+[/math]

 

so seemingly suggests

 

[math]\vec{p} \Psi_+ = 2 m c \vec{\sigma} \Psi_-[/math]

 

[math]\begin{bmatrix} \hat{p}_x \Psi_u \\ \hat{p}_x \Psi_d \end{bmatrix} = 2 m c \begin{bmatrix} -\imath \Psi_{-,d} \\ \imath \Psi_{-,u} \end{bmatrix}[/math]

 

[math]\begin{bmatrix} \hat{p}_y \Psi_u \\ \hat{p}_y \Psi_d \end{bmatrix} = 2 m c \begin{bmatrix} \Psi_{-,d} \\ \Psi_{-,u} \end{bmatrix}[/math]

 

[math]\begin{bmatrix} \hat{p}_z \Psi_u \\ \hat{p}_z \Psi_d \end{bmatrix} = 2 m c \begin{bmatrix} \Psi_{-,u} \\ - \Psi_{-,d} \end{bmatrix}[/math]

 

linking the gradient of the matter wave-functions (in the Schrodinger equation) to the anti-matter wave-functions (from the Dirac equation). So, seemingly, anti-matter is implicitly present, in the Schrodinger equation (??). Order of magnitude:

 

[math]\hbar \vec{k} \approx 2 m c \Psi_-[/math]

 

[math]\frac{k}{k_C} \approx \Psi_-[/math]

 

Thus, the amount of anti-matter implicitly present, in the Schrodinger equation, scales as the ratio of the particle's propagation vector, to its Compton-k-vector (when the wavelength equals the Compton wavelength) -- where-ever the particle possesses momentum, there anti-particles are implicitly present, apparently (w/ some mixing between spin up vs. down components). Would that affect degenerate matter, within White Dwarves ?? Would the squished electron wave-functions begin generating copious quantities of anti-electrons ???

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.