Jump to content

Lorentz force law from potentials ?

Featured Replies

is the following derivation correct (ignoring for simplicity's sake a few factors of c):

 

for a single charged particle, instantaneously located at [math]\vec{r}[/math], in the Classical limit, the fields from said particle, at point [math]\vec{r}'[/math]:

 

[math]\Phi(r') \propto \frac{q}{r}[/math]

[math]r = \sqrt{ \left( \vec{r}' - \vec{r} \right) \circ \left( \vec{r}' - \vec{r} \right) }[/math]

 

[math]\vec{A}(r') = \vec{v} \Phi(r')[/math]

 

the potential generate the force fields:

 

 

[math]\vec{E} = -\nabla \Phi - \frac{\partial \vec{A}}{\partial t} = -\nabla \Phi - \vec{a} \Phi - \vec{v} \frac{\partial \Phi}{\partial r} \frac{\partial r}{\partial t}[/math]

[math]\frac{\partial r}{\partial t} = \frac{1}{2 r} \left( 2 \left( x' - x \right) \left( - \frac{\partial x}{\partial t} \right) + \cdots \right) = - \hat{r} \circ \vec{v}[/math]
where [math]\hat{r}[/math] points away from the force-field generating particle, towards the other point. But [math]\hat{r} \frac{\partial \Phi}{\partial r} = \nabla \Phi[/math]. so
[math]\vec{E}=-\nabla\Phi-\vec{a}\Phi+\vec{v}\left(\vec{v}\circ\nabla\Phi\right)[/math]
[math]\vec{B} = \nabla \times \vec{A} = - \vec{v} \times \nabla \Phi[/math]
[math]\vec{v}' \times \vec{B} = \nabla \Phi \left( \vec{v}' \circ \vec{v} \right) - \vec{v} \left( \vec{v}' \circ \nabla \Phi \right)[/math]

the force felt by a test charge [math]q'[/math] at [math]\vec{r}'[/math]:

 

[math]\vec{F}' = q' \left( \vec{E} + \vec{v}' \times \vec{B}\right)[/math]

 

[math]\frac{\vec{F}'}{q'} = -\nabla \Phi \left( 1 - \left( \vec{v}' \circ \vec{v} \right) \right) - \vec{a} \Phi - \vec{v} \left( \left( \vec{v}' - \vec{v} \right) \circ \nabla \Phi \right)[/math]

 

 

 

i think the above is equivalent to

 

http://en.wikipedia.org/wiki/Lorentz_force#Lorentz_force_in_terms_of_potentials

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.