Jump to content

Indeterminate form?

Featured Replies

Hello, I'm having a bit of difficulty calculating this limit.

 

[latex]\lim_{x\to+\infty }\frac{1}{\; \sqrt{x+1}-\sqrt{x+7}\; }[/latex]

 

[latex]\lim_{x\to+\infty }\frac{1}{\; \sqrt{+\infty +1}-\sqrt{+\infty +7}\; }[/latex]

 

[latex]\lim_{x\to+\infty }\frac{1}{\; \sqrt{+\infty}-\sqrt{+\infty}\; }[/latex]

 

[latex]\lim_{x\to+\infty }\frac{1}{\;+\infty-\infty \; }[/latex]

 

Well this is where I'm stuck. Naturally the square root of infinity will always remain infinity however it results in an indeterminate form since positive infinity cannot be summed with negative infinity.

 

According to my text book the answer should be [latex]-\infty[/latex] but I have no idea how to work it out.

  • Author

try rationalisation

 

[latex]\lim_{x\to+\infty }\frac{1}{\; \sqrt{x+1}-\sqrt{x+7}\; } \times \frac{\sqrt{x+1}+\sqrt{x+7}}{\sqrt{x+1}+\sqrt{x+7}}[/latex]

 

[latex]\lim_{x\to+\infty }\frac{\sqrt{x+1}+\sqrt{x+7}}{\left ( \sqrt{x+1}-\sqrt{x+7} \right )\left ( \sqrt{x+1}+\sqrt{x+7} \right )}[/latex]

 

[latex]\lim_{x\to+\infty }\frac{\sqrt{x+1}+\sqrt{x+7}}{\sqrt{x+1}^{\: 2}-\sqrt{x+7}^{\: 2}}[/latex]

 

[latex]\lim_{x\to+\infty }\frac{\sqrt{x+1}+\sqrt{x+7}}{\left ( x+1 \right )-\left ( x+7 \right )}[/latex]

 

[latex]\lim_{x\to+\infty }\frac{\sqrt{x+1}+\sqrt{x+7}}{-6} =\frac{+\infty +\infty }{-6}=-\infty[/latex]

 

Simple! Thank you!

just remember that limits are generally applied in the last step.

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.