Jump to content

Blog post: pengkuan: Corrected law and Perpendicular action experiment

Featured Replies

 

 

In my Lorentz perpendicular action experiment, (see Lorentz perpendicular action experiment and Lorentz force law, blogspot academia) the movement of a test coil proved experimentally that the magnetic force on it does not verify the Lorentz force law and in consequence, showed a flaw of the law.

 

In this experiment, the magnetic field of a magnet exerts a force on the test coil and makes it turn (see Figure 1). According to the Lorentz force law, the test coil should turn about the axle whether it is parallel to x-axis or y-axis. But the experiment showed that it does not turn when the axle is parallel to y-axis.

 

In the following, I will explain the experimental result using the corrected law of magnetic force that I proposed in Correct differential magnetic force law, blogspot acdgemia, and show that this law describes well the movement of the test coil.

 

Please read the article at

http://pengkuanem.blogspot.com/2013/03/corrected-law-and-perpendicular-action.html

or http://www.academia.edu/2971430/Corrected_law_and_Perpendicular_action_experiment


Read and comment on the full post

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.