Jump to content

Source: some old AMC i think..

Featured Replies

Evaluate:

 

[math]\sum^{49}_{k=1} (-1)^{k} \binom {99}{2k}[/math]

 

Figure this out without using calculator at all.

  • 2 months later...

Sorry, tried to make it look more mathematical.

The answer should be (98 49) - 98 - 99.

 

If I'm wrong, please pots it.

-Uncool-

Instead of the old problem, I want to first solve the general problem of finding

a short-form of

 

[MATH]S(n) = \sum^{n}_{k=0} (-1)^{k} \binom{2n+1}{2k}[/MATH],

 

where [MATH]n[/MATH] is a natural number of any kind. The result of interest is [MATH]S(49) - 1[/MATH].

 

 

We start looking at the expression [MATH](1 - i)^m + (1 + i)^m[/MATH].

By the binomial formula, this can be written as

 

[MATH]\sum^{m}_{k = 0} ((-i)^k + i^k) \binom{m}{k}[/MATH].

 

For all odd [MATH]k[/MATH] we have [MATH](-i)^k + i^k = 0[/MATH].

For all [MATH]k = 4l[/MATH] we have [MATH](-i)^k + i^k = 2[/MATH].

For all [MATH]k = 4l + 2[/MATH] we have [MATH](-i)^k + i^k = -2[/MATH].

 

Therefore, the sum we look upon can be rewritten as

[MATH]2\binom{m}{0} - 2\binom{m}{2} + 2\binom{m}4 + ...[/MATH]

 

Therefore, [MATH]2S(n) = (1 - i)^{2n + 1} + (1 + i)^{2n + 1}[/MATH].

Furthermore, we know that [MATH]1 - i = \sqrt{2} e^{\frac{7\pi}{4} i}[/MATH] and [MATH]1 + i = \sqrt{2} e^{\frac{\pi}{4} i}[/MATH], so

 

[MATH]2S(n) = \sqrt{2}^{2n + 1}(e^{\frac{7(2n + 1)\pi}{4} i} + e^{\frac{(2n + 1)\pi}{4} i})[/MATH]

[MATH]=\sqrt{2}^{2n + 1}(e^{\frac{-(2n + 1)\pi}{4} i} + e^{\frac{(2n + 1)\pi}{4} i})[/MATH].

 

We divide the cases into two; [MATH]n[/MATH] odd and [MATH]n[/MATH] even.

In the first case,

[MATH]2S(n) = \sqrt{2}^{2n + 1}(\cos \frac{3\pi}{4} + \cos \frac{-3\pi}{4} + i \sin \frac{3\pi}{4} + i \sin \frac{-3\pi}{4})[/MATH]

[MATH]= -\sqrt{2}^{2n + 2} = -2^{n+1}[/MATH].

In the latter case,

[MATH]2S(n) = \sqrt{2}^{2n + 1}(\cos \frac{\pi}{4} + \cos \frac{-\pi}{4} + i \sin \frac{\pi}{4} + i \sin \frac{-\pi}{4})[/MATH]

[MATH]= \sqrt{2}^{2n + 2} = 2^{n+1}[/MATH].

 

By this we find [MATH]S(49) - 1 = -2^{49} - 1[/MATH].

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.